
The Future of Multi-Clouds: a Survey of Essential
Architectural Elements

Ilya Baldin, Paul Ruth, Cong Wang
RENCI/UNC-Chapel Hill

{ibaldin, pruth, cwang}@renci.org

Jeffrey S. Chase
Duke University, Computer Science

chase@cs.duke.edu

Abstract—In this paper we present a vision of an environment
composed of multiple independent cloud providers of various
sizes, interconnected by programmable networks in which tenants
may acquire resources from the providers and interconnect
them together to serve a variety of distributed applications.
Based on several years of working with GENI and NSF Cloud
efforts in the US we present the essential elements of such an
architecture and discuss their attributes. These elements perform
functions that we claim are minimally necessary in order to
realize a multi-cloud environment and include: provider and
resource discovery services that rely on flexible, semantically rich
description and query mechanisms, common meta-data services
for maintaining information state of tenant resource allocations,
and programmable interconnect mechanisms to create multi-
provider Software-Defined Exchanges (SDXs) that allow tenants
to control their connectivity using a declarative authorization
logic.

I. INTRODUCTION

The emergence of cloud computing as the dominant archi-
tectural paradigm has substantially affected how scientists and
engineers think about the network architecture. The Internet,
at its roots a distributed decentralized system designed to
withstand multiple disruptions and continue to operate to
deliver information, has become the means for the billions of
users to reach the services of a few ’Internet-scale’ providers
like Google, Facebook and Amazon, whose resources are
concentrated in a relatively small number of datacenters strate-
gically located around the globe. However, we believe that this
architectural pendulum is about to swing again in the direction
of more distributed services. What is driving it is the rise in
performance and the reduction in cost of operation of compute,
storage and network resources, as well as the explosion of
internet-aware small devices located everywhere around us -
the so-called ’Internet-of-Things’ or IoT. These devices are
generating and consuming larger and larger amounts of data
that require low-latency processing and fusion, thus forcing
the relocation of computational and storage resources back to
the network edge.

This process creates an opportunity to rethink the central-
ized network-cloud architecture we see today, as a widely
distributed multi-provider multi-cloud marketplace that allows
end-users to pick and choose providers based on cost, dis-
tance, jurisdiction, performance or capabilities, picking spe-
cific providers for specific tasks within their application stacks.
This paper is based on experiences from more than a decade
of research and development focused on creating federated

widely distributed cloud environments: the development and
deployment by the authors of a networked cloud testbed
environment called ExoGENI[1], [2], [3], [4], itself part of a
federated testbed environment called GENI (Global Environ-
ment for Network Innovations) [5] that was created by the US
research community with funding from the National Science
Foundation (NSF) and our work with Chameleon cloud [6],
part of NSF Cloud program.

Working in these programs we had the opportunity to
experiment with a variety of architectural solutions that needed
to be created in order to enable the desired functionality in
these distributed cloud-network environments. Broadly speak-
ing these solutions can be broken up into three distinct
categories - (I) distributed information sharing services that
support resource discovery and configuration, (II) services that
support programmable connectivity between various elements
of the ecosystem and (III) distributed trust framework that pro-
vides tenant authorization to various services. In this paper we
present our vision of what the minimally necessary functions
in those categories are, we describe our work with prototype
implementations and demonstrate why they are required in
order to realize the vision of a multi-cloud network architec-
ture. In Section II we provide the architectural overview and
motivation for our ideas, Section III describes the first category
of services, while Section IV describes the second. Section V
talks about the trust and authorization framework that ties these
services together. In Section VI we enumerate some of the
related work done by others in this area. In Section VII we
summarize our findings and outline some of the directions for
future work.

II. VISION AND MOTIVATION

Our vision anticipates multiple cloud providers of varying
sizes, geographic distributions and capabilities. Some may
specialize in serving specific geographic locations, others may
be global in nature. They provide resources of different types
- bare servers, virtual machines, containers, application stacks,
on-demand storage and interconnects. Cloud customers or
tenants will want to mix and match these resources based on
their needs - e.g. their and their customers’ locations, required
data sets, restrictions on distribution and use of the datasets,
locations of devices and scientific instruments that must be
connected to processing and storage.

vSDX
vSDX

Provider D

Semantic Discovery Service

Global Metadata Service

Provider A

Provider B

Provider C

Di
st

rib
ut

ed
 T

ru
st

 F
ra

m
ew

or
k

Tenant X

Tenant Y

Fig. 1. Architecture Overview

One example could be a company that provides security
monitoring and uses advanced real-time video object recogni-
tion using high-resolution video feeds from cameras installed
on customer premises. Due to latency and privacy restrictions
it may want to distribute the processing as close to the
premises as possible, and may contract with multiple cloud
providers for resources, while interconnecting all the provi-
sioned resources into a single tenant network. This resource
arrangement belonging to a single tenant is today commonly
referred to as a slice. It may offer different tiers of services and
may want to introduce traffic prioritization to handle different
kinds of customer-related data within the interconnect.

Another example from the world of scientific research may
be a distributed group of researchers and engineers that wants
to deploy a scientific instrument (a telescope, a network of
sensors monitoring a particular region of the Earth, etc) and
analyze the large volumes of data coming off the instruments.
Depending on the type of research, the processing may have
both real-time and non-real-time components, e.g. monitoring
the sky for unknown objects and signaling other telescopes to
train their sights on a specific sector, while in the background
analyzing information for other phenomena and storing it for
the long term. This type of tenant may contract with multiple
providers, with some resources geared towards real-time light-
weight processing and others towards heavy-duty processing
that fuses with other data sources and has guaranteed long-
term storage, making the processed or even raw data available
to other groups. A group like that may contribute their own
lab or campus resources into the slice, thus relying on an
interconnected combination of leased and owned resources to
achieve their goals.

These scenarios are reflected in Figure 1, showing providers
A, B, C and D and two tenants, whose resources are distin-
guished by shape. Providers A, B and C primarily focus on
compute and storage resources, while provider D focuses on
providing virtual interconnects (more on that later). This is the
kind of multi-cloud environments we envision and have been
working towards in our projects.

In order to make such environment a reality, however, there

are a number of capabilities or functions that must be present
and available to the tenants. In Section I we indicated they
come in two flavors: information services and interconnect
services. By analyzing the potential requirements of the tenants
to this architecture we further break them down into:

• Discovery services - those that enable tenants to lo-
cate the desired resources and the providers offering
them. Providers can publish information about available
resources, while tenants can query for them via well
established APIs and resource description mechanisms

• Metadata services - those that allow tenant resources in
various providers to store and exchange configuration
metadata about themselves or applications running on
them, regardless of the provider

• Programmable interconnect services - those that allow to
interconnect tenant resources across multiple providers in
an authorized manner, while allowing for the interposition
of tenant forwarding policies into the data plane

Clearly the discovery services and interconnect services are
necessary - without them the tenants would have no way
of identifying required resources and interconnecting them to
create their slices. What about the metadata services? Many
public and private cloud implementations today feature such
services e.g. AWS metadata service [7], OpenStack metadata
service [8] or AWS SSM [9]. All of them are essential for boot-
strapping the tenant software stacks, however their significant
drawback is, they are constrained to a specific cloud provider
domain or tied to a specific provider authorization infras-
tructure. For launching applications across multiple domains,
tenants must be able to collect and retrieve metadata from
resources deployed across multiple cloud providers, hence our
assertion that such is service is necessary.

We also emphasize that the discovery and metadata services
must be deployed in a provider-independent manner, i.e. they
must not belong to a single provider. They must allow tenants
from any provider to connect in order to use their services
and they must rely an authorization model that is separate
from the specific provider authorization - not the case e.g.
with AWS SSM, which treats external instances connecting to
it as second-class citizens compared to instances launched on
AWS.

In contrast, the programmable interconnect service can be
rendered by an individual provider independent of others,
focusing on interconnect resources, rather than more tradi-
tional storage and compute. Some of today’s telecommuni-
cations providers may play this role once their infrastructure
is sufficiently virtualized. A provider offering such service
instantiates virtual programmable interconnects that allow in-
dividual tenants to create private networks with programmable
dataplanes. Such networks may peer with commodity Internet,
or remain as private enclaves, depending on the security
requirements of the tenant. The capabilities of such intercon-
nect providers should be discoverable and can use the same
metadata services as any other provider.

All three of these services in one way or another must rely
on a distributed trust and authorization framework that is based

on endorsements from different trusted entities - providers,
information brokers, tenants, consortia etc. - all depending on
specific governance models and relationship types, like com-
mercial customer-provider relationships, scientific collabora-
tions or government-regulation based relationships. Discovery
services must scope answers to queries, depending on the level
of trust between the entity issuing the query and the entity
answering it. Tenant X, trusted by provider D may receive a
fuller picture of provider topology, compared to Tenant Y, who
may only get an aggregated picture. Metadata service must
allow read and write accesses to various parts of metadata store
depending on the types of principals that are trying to access it
- an applications running within Tenant X infrastructure may
get different levels of access of different portions of slice
metadata (read vs. modify). Finally, elements of Tenant X
infrastructure must be properly authorized to connect to virtual
SDX in provider D; the situation gets even more complex for
vSDXs that allow multiple tenants to exchange traffic with
each other in an authorized fashion (not shown in Figure 1).

We emphasize that the services we describe in this paper are,
in our opinion, minimally necessary to enable the envisioned
architecture. Other services may provide a significant added
value, however may not be necessary for the ecosystem to
exist.

In the following sections we discuss the requirements and
prototype implementations of the outlined services.

III. DISTRIBUTED INFORMATION SHARING SERVICES

A. Discovery Services

A discovery service must be able to answer questions
about resource existence and availability. It must support a
multi-cloud environment with many different providers offer-
ing a heterogeneous mix of resources. Connectivity between
provider resources is itself considered a resource that must be
queriable, thus requiring support for various types of path-
finding and topology embedding queries, i.e. determining iso-
and homeo-morphic mappings between resources topologies
as described by the tenant and topologies as described by
providers. It must also be able to scope its answers to the
level of authorization of the querier - providing different views
or persistent queries [10] of the same data, depending on the
level trust.

These high-level definitions lead to further lower-level re-
quirements - the discovery system must operate using flexible
and extensible declarative resource description and query
mechanisms, that on the one hand allow providers to describe
the resources they have, and on the other, allow tenants to
describe their resource needs.

The representation formats designed by the semantic web
community (RDF - Resource Description Framework [11],
OWL - Web Ontology Language [12]) represent a good
starting point for the various uses we outline. They permit to
represent many types of both qualitative, as well as quantitative
relationships between elements of a networked system. The
semantics built into class and property hierarchies add addi-
tional expressiveness. The adoption of these formats allows

to move away from questions of bit representation of data
on the wire or disk and instead concentrate on the more
important questions of the appropriate network information
models and their use. SPARQL query language [13] provides
a rich framework for formulating graph queries.

Semantic descriptions with their complex hierarchies of
entity classes and property relationships and standardized
vocabularies act as the common abstraction layer to which
all other representations can be converted. Critically, these
can be extended by individual providers to define classes
and properties specific to their environment. The RDFS and
OWL entailments allow common resource management and
topology embedding algorithms to operate on the shared
common classes, thus improving their portability. Considering
the main goal of our work of enabling a multi-provider hetero-
geneous environment, having such a common and extendable
way of describing resources is a critical property. Working
with other researchers we have defined several ontologies or
vocabularies of discourse for describing cloud and networking
resources [14], [15], [2].

The discovery service may answer the following types of
queries to providers:

• Resource types, locations and attributes. e.g. identify
resources in geographic proximity of a specific location
using inferences from the provided ontologies.

• Connectivity between resources to determine common
network providers, links etc.

• Specific attributes of the connections between resources
• Business and other types of relationships between re-

sources and providers to support policy-driven tenant
resource requests

Additionally, common networking computation tasks, like
path computation and virtual topology mapping, can be mod-
eled as subgraph extractions on the semantic graph [16], that
we discussed in detail elsewhere [14], [17]. This allows new
resource management algorithms to be built as procedural
code heavily leveraging common operations abstracted as
standardized queries that are independent of the programming
environment and implemented efficiently in common toolsets.
Using queries is motivated by similar goals as the develop-
ment of database management systems to replace hardcoded
file processing algorithms: i.e. enabling reuse and automatic
optimization.

Rule engines (Pellet, Hermit [18], [19], [20]), typically
associated with RDF storage systems can be used to perform
additional processing on the resource models in a declarative
(using e.g. a constrained version of Datalog), rather than
procedural fashion, which makes them more portable and
verifiable - a critical feature in complex distributed systems.

Using one such system [21] we implemented a rule-based
semantic validity verification for tenant slice topology re-
quests. For example, if a tenant is attempting to embed a
vSDX with more than two endpoints that connects multiple
provider domains, each domain must be mentioned only once.
E.g. it is OK to say, ‘I would like to have a connection
between nodes belonging to domains A, B and C’. It is

Provider A

Provider B

Discovery Service
Broker

Provide Resource
Descriptions

Query

Fig. 2. Discovery with a centralized broker

NOT OK to say ‘I would like to have a vSDX connection
between nodes belonging to domains A, B and A’, since this
actually represents a poorly formed request for a point-to-point
connection between domains A and B. The tenant must re-
normalize the request prior to submitting. The rule expressing
this constraint in Datalog is shown below:

(?Z rb:violation error(”Domains in vSDX can’t be repeated”, ?X))
< − (?X rdf:type topo:vSDX), (?X topo:hasInterface ?I1),

(?X topo:hasInterface ?I2), notEqual(?I1, ?I2),
(?A topo:hasInterface ?I1),
(?B topo:hasInterface ?I2),
(?A rdf:type comp:ComputeElement),
(?B rdf:type comp:ComputeElement), notEqual(?A, ?B),
(?A req:inDomain ?D1), (?B req:inDomain ?D2),
equal(?D1, ?D2),
(?X topo:hasInterface ?I3), notEqual(?I1, ?I3),
notEqual(?I2, ?I3),
(?C topo:hasInterface ?I3),
(?C rdf:type comp:ComputeElement),
(?C req:inDomain ?D3), notEqual(?D3, ?D1)

Common syntactic schema-checking mechanisms (e.g. for
XML schemas) fail to catch problems like these, however
rule-based systems allow to express such rules in a compact,
portable and verifiable form.

Architecturally, the semantic resource description informa-
tion from providers to the tenant can flow through a centralized
broker. This is the solution we implemented in ExoGENI [2]. It
simplifies the implementation of the client and allows placing
complex common pathfinding and embedding algorithms into
the broker, however it also has several drawbacks - the broker
becomes a single point of failure; it is a trusted intermediary,
which decides the level of disclosure of resource topology
information to tenants, instead of the provider; finally, when
the resource state changes, the broker must be notified and
updated, reducing the timeliness of the information available
to tenants. This scenario is shown in Figure 2.

An alternative deployment places a discovery service agent
with each provider - it operates on behalf of the provider
and is trusted by it to make the right decisions with respect
to scope of information that is sent in response to queries.
However if a tenant is considering an embedding of their slice

Provider A

Provider B

Federated
Query

Discovery Service

Discovery Service

DNS

Locate Discovery
Service Instances

Fig. 3. Distributed discovery with federated query

into multiple providers, complex federated queries must be
issued by the client against multiple provider discovery service
endpoints and it becomes the client’s task to perform join or
join-like operations on the returned information. This feature
is defined in SPARQL 1.1 and implementations exist [22],
however they suffer from performance penalties compared to
the centralized approach. An additional problem that must
be solved is the discovery of discovery services themselves.
A tenant wishing to query multiple providers must find out
service endpoints at each provider that can be queried. This
problem can be addressed by using a modified DNS (Domain
Name Resolution) service with custom record types, as shown
in Figure 3. Ultimately both types of deployments - the broker-
based and the distributed, have their place, depending on the
requirements of the particular environment.

In developing the idea of semantic-based discovery services,
we found that the performance of these systems can be further
improved, compared to SPARQL-based systems, if we limited
the set of queries to path-finding queries with structural
and semantic constraints using a Tarjan path algebra [23].
Semantic constraints would typically involve link and node
type subsumptions, that can be addressed via standard RDFS
and OWL entailments. Structural constraints may refer to link-
and node-disjointedness requirements represented by inclusion
or avoidance of specific links or nodes in the query response.

Path algebras [24], [25], [26] have been proposed as a
foundation for solving many networking problems. Many such
algebras have focused on efficient solutions of variants of
shortest path problem. However, encoding a wider range of
connectivity problems requires designing a new path algebra,
specific to common problems faced, in our case, by SDN con-
troller designers. Further, existing algebras are not concerned
with constraints on semantic properties of networks which are
also critical, and require extending the algebraic approach to
support them.

In [17] we explored several methods to storing and querying
semantically rich data, restricting our queries to a small
number of types. We evaluated query expressiveness and
performance using three methods: one based on Semantic
Web standards and SPARQL 1.1 query language, another

based on graph databases, specifically Neo4j and Cypher query
language, and, finally the approach we developed using path
algebras based on path regular expressions. We designed a
path algebra and an accompanying approach for efficiently
storing pre-processed topology information. Our approach
lends itself to decomposition into three distinct phases - pre-
processing the data, querying the data and pruning the results.
By pre-processing and efficiently storing the data ahead of
time we significantly reduce the query time, amortizing the
significant pre-processing time over a large number of queries,
thus improving the overall responsiveness of the system. We
demonstrated the performance advantages of our approach for
these types of queries. The novelty of this approach is in
identifying common path and topology query abstractions and
proposing an efficient way of storing and operating on seman-
tically enriched abstract network topology representations that
fit those abstractions.

Our ongoing work is involved in developing a system of
views of semantic data based on authorization level.

B. Metadata Services

Metadata services must allow storing information about
resources provisioned for the tenants by more providers. This
information is used by the operating systems and applications
running on compute resources within the slice to configure
or update their behavior as the slice configuration changes.
The service must allow scoping of information for easy and
efficient management and it must provide granular authoriza-
tion control not only for the metadata of different tenants
and slices, but even within individual slices, as different
principals may have different rights to read and modify the
metadata. Importantly, since this service is intended to span
many providers and tenants, it must be distributed and scale
well.

We define multiple examples of principals that may need to
have access to the metadata:

• Users - tenants responsible for creating the virtual sys-
tems or slices and, also other users authorized by the
lead tenant to access individual elements of the slice and
configure applications on them.

• Cloud provider agents - responsible for provisioning the
infrastructure. They originate large amounts of metadata
when resources are instantiated.

• Tenant infrastructure control agents - these could be
specialized applications, like SDN controllers, charged
with managing the tenant’s virtual infrastructure.

• OS configuration software in the instances - this
software may fine-tune the configuration of the running
instances in a slice by consulting the meta-data.

• Applications running inside compute instances - appli-
cations may consult metadata created by other principals
or use the metadata service to exchange information
between their own distributed elements by writing and
reading from the service.

The rights to create, read and write the metadata must be
carefully and separately managed by the metadata service

allowing the principals which create individual elements of
metadata to have control over which other principals have the
ability to read, write or modify their elements. This approach
contrasts with traditional metadata service implementations
[7], [8], which allow the tenant to create, read and write meta-
data for a given instance and any software on the instance has
the same rights to read and modify that metadata regardless of
ownership. Also, because the access to metadata is controlled
based on the IP address of the instance, no other instances
can access the metadata, limiting its use for configuring the
behavior of distributed applications. Further in this section we
provide examples of use for our metadata service.

Similarly, while common implementations, like AWS [7]
and OpenStack [8] provide metadata as an unstructured blob,
whose interpretation is left to the originator (in this case
tenant) and the consumer (in this case software running inside
the instance), our design imposes some minimal structure on
the metadata. Metadata is created as a set of key/value pairs
with values that can be individual strings or, more generally,
JSON-like objects. The key name and the interpretation of the
value of a given key is left to the originator and the consumer,
which in our case can be any of the principals described above.

In order to avoid key name collisions we introduced a two-
tier namespace hierarchy, with the top tier typically reserved
to individual slices, and the second tier used as an additional
typing discriminator. Thus each tenant gets to have a names-
pace for her slice (slice names are assumed unique and can be
represented by e.g. UUIDs [27]), further breaking down the
slice namespace by types to e.g. allow multiple applications
manage their own key-name spaces within a slice or for
semantic convenience. A type could be any unique string,
e.g. “network” or use application name as an identifier, e.g.
“hadoop”.

We implemented a prototype of this cloud-based metadata
service as a REST-ful service on top of Accumulo database
called COMET [28], the general architecture of COMET
is shown in Figure 4. We chose Accumulo as the back-
end database, because Accumulo is a ‘sorted, distributed
key/value store that provides robust, scalable data storage
and retrieval’ [29] that in addition features cell-based access
control, allowing each cell to have a unique credential. This
per-cell credential is essential to our implementation because
it provides highly flexible user control on a sub-database
level. Each Accumulo entry is referenced by a key tuple
<ContextID, Family, Key> which map to our notions of
<Slice ID, Type, Key> described above and allows to imple-
ment a ‘bearer token’ type authorization for each individual
Key/Value pair.

To support the full range of controls over operations on
metadata, COMET uses a combination of X.509 client cer-
tificates and bearer tokens stored in Accumulo to manage the
rights of various principals attempting operations on metadata.
COMET defines four REST calls that roughly map into POSIX
file semantics and Table I shows how the combination of
certificates and tokens is used to decide on rights for each
REST call.

COMET API Call Semantics Trusted Cert Read Token Write Token

write(SliceID, Type, Key, Value,
ReadToken, WriteToken) create a new key and associate a value with it V S S

write(SliceID, Type, Key, Value,
ReadToken, WriteToken) write new value into existing key V V

read(SliceID, Type, Key, ReadToken) read value for a given key V
enumerate(SliceID, Type, ReadToken) enumerate keys in context/family V
delete(SliceID, Type, Key,
ReadToken, WriteToken) delete a key/value pair V V V

TABLE I
COMET API CALL ACCESS VERIFICATION. V = VALIDATE, S = SPECIFY

Cloud Provider 1
(ExoGENI)

Cloud Provider 2
(Chameleon)

REST API

Meta-data service logic layer

Backend (Accumulo)

ExoGENI
Aggregate Manager

Chameleon
Aggregate Manager

Fig. 4. Metadata Service Prototype Architecture

Note that the write call has two separate semantics - create
and modify existing. Creating a new key and associating
some initial value with it is considered a highest privilege
operation, that requires trust between the principal attempting
the operation and COMET. In addition, it requires that trust is
established without the principal and COMET having a pre-
arranged agreement on tokens. To establish this initial trust,
COMET uses X.509 client certificates that can be traced to
one of the trust roots configured into it. A client connecting
to COMET service must present a valid client certificate in
order to be empowered to create new key/value pairs. In this
call the principal also must specify two separate secret tokens
- a read token and a write token. The principal then is free
to share these tokens with other principals as she sees fit,
thus giving her complete freedom of managing access to the
individual key/value pairs created by her.

In the implementation, the read token maps directly onto
Accumulo cell access token, required to access a given value
associated with <ContextID, Family, Key>, while the write
token is stored within the value JSON block associated with
the key, invisible to users of COMET. Note that tokens are
additive - a read operation on a key requires only a read token,
while the write-modify operation requires both a read token

and a write token.
Enumerate call provides a listing of key names associated

with a given <ContextID, Family> or, equivalently <Slice,
Type> tuple to which a given read token grants access.
Deletion, like write-create is a privileged operation, requiring
a trusted certificate, in addition to read and write tokens. This
prevents unauthorized deletion of keys by users who were
merely empowered to modify the value of a particular key.
X509 client certificates are optional for write-modify, read and
enumeration operations.

A typical example of using COMET for configuring in-
stance OS behavior may be to specify instance host name and
IP addresses of interfaces. In a typical AWS or OpenStack
installation DNS and DHCP owned by the provider are used
for these purposes, however when a slice is created across
multiple providers these solutions are not appropriate - if a
tenant creates a private network spanning multiple provider
sites, both these services need to be owned and operated by
the tenant, which in many cases is a significant overhead.
COMET simplifies these operations by offering a tenant a
way to communicate this information to the instance, and a
simple software agent running on the instance can then retrieve
the information and configure appropriate OS services (name
resolution and networking stack, in this case).

Critically the credentials and service endpoint to access
COMET are communicated to the agent via traditional
provider-based metadata services using a simple JSON or INI
format with a few key/value pairs: comet end point URL, slice
identifier and read token or tokens needed to access specific
keys storing the hostname and IP address information. The
provider-based metadata service in essence is used to bootstrap
the more powerful COMET capability.

More sophisticated examples of using COMET include e.g.
distributing SSH keys and populating automatically generated
/etc/hosts files inside a cluster that is part of tenant slice,
a requirement common e.g. for Hadoop or Condor man-
agement systems. A network private to the slice is used to
communicate between a head node and worker nodes and
requires configuration of trust via SSH and name recognition
to operate properly. In this case the metadata (SSH keys,
hostnames) can be generated by individual instances, written
into COMET and read by other instances to populate their
SSH ˜/.ssh/authorized keys files and system-wide /etc/hosts -
all tasks that a traditional metadata service restricted to a single

provider cannot accomplish.

IV. PROGRAMMABLE INTERCONNECT SERVICES

A programmable interconnect supporting a multi-cloud can
be thought of as a multi-tenant Virtualized Software Defined
eXchange (vSDX). This model complements the functionality
of a multi-tenant clouds by enabling tenants to request and
manage networking resources between traditional cloud sites
as well as enabling tenants to provide networking services to
other tenants.

Traditional SDXs reside in a single physical location to
which clients create physical connectivity. The SDX forwards
layer 2 and 3 traffic between clients respecting traffic policies
and agreements defined by the clients. In addition, the SDX
may provide NFV services, such as security monitoring, on
behalf of the clients.

In a multi-cloud environment, tenants combine resources
from many cloud and network service providers. These tenants
will not have the capability to create dedicated physical
paths between a cloud site and an arbitrary physical SDX.
Instead, a multi-cloud vSDX provider deploys virtual network
connections to each cloud site it supports. Tenants can request
cloud networking resources from the provider that connects
their resources among the cloud sites, instantiating virtual
exchange services. Once the cloud resources are connected
to the virtual exchange, the tenant can request the vSDX to
forward traffic between tenant resources at various cloud sites
and even between slices belonging to different tenants.

Examples of services that multi-cloud vSDXs could provide
include:

• Direct L2 circuits between sites
• Routing between subnets residing in different cloud

providers
• Intrusion detection placed at the edge of the tenant

network
• Performance enhancements, like e.g. multi-path, conges-

tion avoidance or resilience
• Tenant-controlled SDN service in the vSDX - interposing

complex tenant forwarding policies into the slice network
We have extensive experience both building and using

ExoGENI – a testbed used for networking and distributed
systems experiments. As part of our project we have pro-
duced tools for creating ExoGENI slices that provide vSDX
service to attached university campuses and slices belonging
to different users using the developed SAFE authorization
framework, described in Section V. The vSDX hosted in
ExoGENI can create trusted circuits between ExoGENI slices
and selected ExoGENI stitchports – negotiated peering points
with external infrastructure. For example we have demon-
strated creating a vSDX linking ExoGENI edge resources to
Chameleon NSF Cloud, thus linking resources of the two
testbeds providers into a single tenant slice. The virtual SDX
model enables SDX users to leverage ExoGENI’s automated
creation and stitching of L2 paths across wide-area dynamic
circuit providers. Requests to use these stitchports is protected
by SAFE authorization using exemplary access control models

(groups, roles, capabilities, and principal attributes including
GENI attributes and slice ownership information).

Our work focuses on advancing support for GENI-like
testbeds as a petri dish to culture new approaches to security-
managed network services. Our approach is inspired in part
by proposals put forward by leading researchers more than
a decade ago for “pluralist” network architecture based on
deep virtualization. Most notably, the authors of Plutarch [30]
and Cabo [31], [32] build network service providers (NSPs)
as a software layer over programmable infrastructure: pipes,
programmable switching points, and in-network computation.
They offer a compelling vision of NSPs that manage end-
to-end interoperable connectivity, riding over an architecture-
neutral underlay of infrastructure providers.

Live tenant NSPs require performance assurances that are
precise and strong at the foundation—the testbed infrastructure
service. Recent post-GENI testbeds, including Chameleon,
emphasize bare-metal control to achieve high fidelity. Our
work uses ExoGENI slices provisioned using open-source vir-
tualization (e.g., KVM), similarly to commercial IaaS clouds.
ExoGENI leverages advanced circuit fabrics (I2-AL2S, ES-
net) for the cross-site network backplane. Thus, slices may
instantiate end-to-end network topologies and evolve them
by allocating and releasing VMs and dynamic circuits, with
precise resource contracts from the infrastructure providers.

With these ingredients in place, our objective is to enable
testbed-hosted NSPs as tenant slices, that benefit real users—
for example, to implement secure built-to-order virtual science
networks that span campuses. Going further, we strive to
support inter-domain networking experiments: traffic routing
among NSPs that are controlled by different tenants and that
peer with one another as in today’s Internet.

Our initial efforts focus on three key elements. First, enable
controllable packet flow into and among GENI slices. Exo-
GENI stitchports allow slices to establish peering links with
other slices at L2 by mutual consent [33], [34]. Moreover,
many university campuses have deployed SDN-enhanced edge
networks that support opt-in redirection of real user traffic into
the circuit fabrics and into locally hosted GENI edge points of
presence (PoPs). Second, introduce an elastic slice controller
architecture for slices to adapt their configurations over time—
we might call them “software-defined slices”. We recently
reported on initial experiments with Ahab slice controllers and
elastic NSP slices in ExoGENI [34]. Third, introduce tools
for participants to authorize their peering connections, traffic
flows, and related interactions. To this end we introduced
SAFE: a declarative assertion and policy language—a trust
logic—and certificate transport for secure logical trust [35].

Figure 5 illustrates our prototype multi-cloud programmable
interconnect called ExoPlex including its structure for hosting
end-to-end tenant network providers (NSPs) with in-network
services, such as elastic security scanning. ExoGENI is a good
foundation for these NSPs because it provides on-demand
computation and programmable (virtual) switching/NFV ca-
pacity at multiple sites/PoPs on advanced network circuit
fabrics linking many campuses and research centers. The

vSDX NSP
Slice Controller

ExoPlex

OVS

OVS

OVS

OVS

OVS

Network
stitching

Network
connec-

tivity
OVS

Bro

Mirrored
flows

Deploy

Deploy

Client Domain

Client Domain

Stitchport

Client Domain REST API

Ahab
network manager

Fig. 5. The ExoPlex network service architecture. A vSDX NSP supported by ExoPlex uses an elastic slice controller to coordinate dynamic circuits and Bro
security monitors via Ahab. The controller exposes REST APIs for clients to request network stitching and connectivity and uses a SAFE engine to check
each request for compliance with logical trust policies.

customers of a tenant NSP may be subnets in an SDN-enabled
host campus network, external networks or testbeds connected
through network circuits to edge interfaces (stitchports), or
other ExoGENI slices connected via direct L2 peering of
the slice dataplanes [33]. For example, the prototype vSDX
provides network transport service to the Chameleon testbed
using ExoGENI tenant slice controller called Ahab, it also
integrates an NFV security function using Bro open-source
IDS system [36].

An ExoPlex NSP is a testbed slice containing a dynamic
virtual network topology. Each customer of an NSP attaches
to it at L2 to form a peering link between at least one pair
of interfaces on their network edges, via a circuit attached
to a stitchport, or (if colocated at a site) by direct peering
over an ExoGENI site interconnect. The customers route traffic
onto their peering links, and the NSP transports the traffic
onto an egress link to the destination customer—or drops it—
according to its configured policies.

V. DISTRIBUTED TRUST

Many of the key problems for multi-cloud environments in-
volve managing trust. Managed trust is essential for acceptance
of governing authorities (e.g., federation roots), grounding of
global name spaces and address spaces, resource delegation,
identity management, group membership endorsements, in-
tegrity attestations, data access control, secure connectivity and
network traffic filtering, and service trust.

The multi-cloud architecture that we envision occupies a
middle ground between today’s centrally controlled cloud
services, in which trust is based on social trust in the service
provider, and “trustless” architectures such as blockchains.
Outsourcing and infrastructure markets inherently involve
some degree of trust in providers, and even partial trust
improves efficiency relative to trustless approaches. However,

to the maximum extent possible, trust should be decentralized
across independent entities who are accountable for their
actions, and expressed in controlled delegations that preserve
the well-known Principle of Least Privilege.

We take a common approach to all of these problems by
factoring trust concerns out of the implementations and into a
common declarative authorization plane, based on the SAFE
framework [35] and the Datalog logic language. Principals
in the system issue logic assertions to represent delegations,
endorsements, and policies. These statements are authenticated
by signing under the issuer’s keypair or by transmission via
SSL-protected channels. SAFE enables participants to execute
trust queries against assembled sets of logic statements to
validate trust decisions relative to a policy. With SAFE, logical
specifications are directly deployable in the implementation.

The design of SAFE was motivated by our experience in
applying logical trust in the development of GENI. Although
GENI was conceived as a network testbed, it is best understood
as a federation of autonomous IaaS providers (“aggregates”)
linked by various trust relationships and agreements. GENI
serves a community of registered researchers with various
institutional and project affiliations. Each provider has vari-
ous policies governing client access. These policies consider
endorsements and delegations of trust among the participants,
including a root trust anchor that certifies the aggregates
and various authority services to govern membership and
coordination. In this respect GENI is representative of multi-
cloud systems in general, although there are differences in
terminology.

SAFE synthesizes elements from previous trust logic sys-
tems and extends them with additional system support to
enable practical deployment. The novel elements of SAFE
include a scripting language to insulate applications from logic
concerns, and an interface to a shared key-value store (e.g.,

a DHT), which stores authenticated logic content as signed
certificates in a native SAFE format. Certificates in the store
are indexed by self-certifying links, and can be written only
by their issuers. The application trust scripts contain parame-
terized logic templates to generate certificates easily, and also
to link certificates to construct DAGs programmatically as a
side effect of delegations.

The linking mechanism simplifies discovery and retrieval
of the content relevant to a trust decision. The certificate
links also enable pass-by-reference and caching of certificate
content at the authorizers. The shared certificate store enables
an issuer to update or revoke its certificates by their tokens,
addressing common PKI concerns.

The three types of services described: discovery, metadata
and programmable interconnect, must rely on a distributed
trust and authorization framework such as SAFE in order
to fulfill their functions. Recall our assertion that these ser-
vices must rely on authorization mechanisms external to any
provider. The programmable interconnect service described in
Section IV is already integrated with the SAFE prototype: each
instantiated vSDX uses a tenant-specified SAFE policy (writ-
ten in Datalog) to decide how the various tenants connecting
to it can exchange traffic with each other [35].

Integrating the discovery service and the metadata service
with SAFE remains the area of ongoing work for us. We
envision SAFE policies being used to define the different
scopes of disclosure of provider topology to the tenant queries.
Similarly, we anticipate using SAFE policies to determine
access to various parts of metadata - moving away from bearer
token based authorization we use today to more complex
policies that e.g. allow for delegation of rights to certain parts
of metadata. In the Accumulo-based COMET implementation
the delegation is implicitly implemented by passing the read
or write tokens from one principal to another, however it has
one significant flaw - once the token is given by the originating
principal to another, the original principal has no control over
who may get their hands on that token. A principal given a
token may decide to pass it to another principal and so on, and
this act requires no permission from the original principal. A
SAFE access policy would allow us to precisely control the
degree of delegation between principals simply based on their
identity, without the need to pass tokens around. Thus we see
SAFE trust framework as an important pillar of the multi-cloud
architecture described in Figure 1.

Beyond the described services the SAFE trust framework
that is independent from individual providers can serve as a
foundation for a large number of other multi-cloud services,
making their deployment significantly easier, and their autho-
rization policies more expressive.

VI. RELATED WORK

Coupling with the rapid growth of cloud computing, the
federation of cloud services [37], [38], [39] is becoming a
widely discussed topic. To date, most of the existing research
works target the same goal of utilizing multiple cloud in-
frastructures to achieve better reliability, resource provision-

ing and application scalability. In this section, we review
the related work on intercloud architecture from the cloud
provider’s perspective, which is coarsely divided into global
intercloud services, semantic descriptions and software defined
exchanges. We also discuss relevant work in distributed trust
systems.

Global Inter-cloud Services A paradigm shift is in progress
in favor of Intercloud Computing. For instance, 20 approaches
to this new challenge are presented in [37]. Within this context,
Manno et al. proposed the use of the semantic Federated Cloud
Framework Architecture (FCFA) [40] to manage resource
life cycles based on formal models. In contrast, the Inter-
cloud architecture developed within the Institute of Electrical
and Electronics Engineers (IEEE) Standard for Intercloud
Interoperability and Federation (P2302) [41], [42] Working
Group uses graphs to describe and to discover cloud resources
based on the existing Open-Source API and Platform for
Multiple Clouds (mOSAIC) [43] ontology. Both approaches
are being considered as domain-specific extensions to our
work. In addition, Santana-Prez et al. [44] proposed a
scheduling algorithm that was suitable for federated hybrid
cloud systems. The algorithm applies semantic techniques
to scheduling and to matching tasks with the most suitable
resources. The information model is based on the Unified
Cloud Interface (UCI) project ontologies, which cover a wide
range of details but which cannot handle Intercloud systems.
Le and Kanagasabai [45], [46] also proposed ontology-based
methodologies to discover and to broker cloud services. They
use Semantic Web technologies for user requirements and for
cloud provider advertisements, and then apply an algorithm
to match each requirement list to advertised resource units.
Multiple levels of matching are defined, ranging from an exact
match to no match. These methodologies concentrate only
on Infrastructure as a Service (IaaS) provisioning. Moreover,
they typically neither export their data nor provide a SPARQL
Protocol And RDF Query Language (SPARQL) [47] endpoint,
thereby hindering reuse of and access to data.

Semantic Resouce Descriptions Semantic descriptions pro-
vide a blueprint of the network set up, therefore, it is critical
to ensure common description standards in the deployment of
federated cloud infrastructures. In this section, we discuss the
semantic descriptions for network and cloud infrastructures.

Researchers have been exploring semantic models to ad-
dress inter-infrastructure issues since 2008 [48]. These con-
cepts were further adopted in the Global Lambda Integrated
Facility (GLIF) [49] and GENI communities. The initial
building block for our work is an RDFS ontology called NDL
(Network Description Language) [50], [51], [52]. The primary
use of NDL has been in GLIF, where it is used by individual
network providers for sharing the network topology details
with each other.

In mOSAIC [43] the authors present a compute ontol-
ogy based on a collection of cloud taxonomies (NIST [53],
OCCI [54]). This ontology is part of a larger effort to create a
unified cloud API that is semantically enriched using elements
of the ontology. The effort is concentrated on unifying the

views of different cloud providers of varying types (SaaS,
PaaS, IaaS) under a single API. Our own compute ontology
is also loosely based on NIST and other taxonomies, but is
focused only on a single provider type - IaaS, however is much
richer in terms of its ability to describe network topologies.

Software Defined Exchange Software Defined Exchange,
proposed in 2015 [55], is an application of the highly suc-
cessful Software Defined Networking concept, which creates
Internet exchange points (IXPs) that apply SDN policies to
control inter-domain network traffic flows. In [56], Gupta et
al. extended the implementation of SDX to support industrial
IXPs. To date there have been a number of deployed Software-
defined IXPs, such as LightReading [57] and Google’s Cardi-
gan SDX controller [58] [59]. In a previous works [60]
and [61], we presented a set of efforts toward the implemen-
tation of security-managed virtual SDX as an interconnection
point to provide high throughput layer-2 link provisioning on
national scale cloud infrastructures.

Distributed Trust There is a rich body of work on dis-
tributed trust systems. Most importantly we should mention
the SPKI/SDSI [62], [63], [64], which is conceptually similar
to SAFE, identifying principals by their private keys (or their
hashes), allowing for multiple roots of trust. SPKI/SDSI policy
language is aimed at encoding ACLs and thus based on first-
order logic. Datalog queries used in SAFE can also be reduced
to first-order logic.

Among policy languages, we should also mention
XACML [65] - an OASIS standard for defining security
policies. XACML is more expressive compared to SAFE,
however its semantics are not well-defined and verification
is possible only on a subset of the full language [66].

VII. CONCLUSIONS

In this paper we presented our vision of a multi-cloud
networked architecture of the future. We discussed the ser-
vices, that are in our view critical to the deployment of such
architecture and provided examples of implementations of
such services from our work. We also discussed the trust
framework required to implement authorization policies for
these services.

Our future directions include further development of our
ideas and prototypes, the integration of discovery and metadata
services with SAFE framework and development of standard-
ized complex authorization policies for each service. We are
also expanding the capabilities of our vSDX deployments
to support more production-oriented services for a variety
of science domains and deploying distributed applications
that can take advantage of this highly-programmable multi-
provider infrastructure.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
National Science Foundation under grants No. CNS-1526964,
ACI-1642140, CNS-1330659, and through NSF’s Global En-
vironment for Network Innovation (GENI) program.

REFERENCES

[1] I. Baldine, Y. Xin, A. Mandal, P. Ruth, A. Yumerefendi, and J. Chase,
“ExoGENI: A Multi-Domain Infrastructure-as-a-Service Testbed,” in
TridentCom: International Conference on Testbeds and Research Infras-
tructures for the Development of Networks and Communities, June 2012.

[2] I. Baldin, J. Chase, Y. Xin, A. Mandal, P. Ruth, C. Castillo, V. Or-
likowski, C. Heermann, and J. Mills, “Exogeni: A multi-domain
infrastructure-as-a-service testbed,” in GENI: Prototype of the Next
Internet, R. McGeer, M. Berman, C. Elliott, and R. Ricci, Eds. New
York: Springer-Verlag, July 2016.

[3] A. Mandal, Y. Xin, I. Baldine, P. Ruth, C. Heerman, J. Chase, V. Or-
likowski, and A. Yumerefendi, “Provisioning and evaluating multi-
domain networked clouds for hadoop-based applications,” in Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third
International Conference on, Nov 2011, pp. 690–697.

[4] I. Baldine, J. Chase, Y. Xin, D. Irwin, V. Marupadi, A. Mandal, C. Heer-
mann, and A. Yumerefendi, “Autonomic cloud network orchestration: A
GENI perspective,” in IEEE International Workshop on Management of
Emerging Networks and Services (IEEE MENS 2010), Miami, Florida,
USA, 12 2010.

[5] R. McGeer, M. Berman, C. Elliott, and R. Ricci, Eds., GENI: Prototype
of the Next Internet. New York: Springer-Verlag, 2016, in production
for publication July 2016.

[6] Chameleon Cloud, https://www.chameleoncloud.org/.
[7] AWS Metadata Service, https://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/ec2-instance-metadata.html.
[8] OpenStack Metadata Service, https://docs.openstack.org/nova/latest/

user/metadata-service.html.
[9] AWS SSM Service, https://docs.aws.amazon.com/systems-manager/

latest/userguide/ssm-agent.html.
[10] R. Elmasri and S. Navathe, Fundamentals of Database Systems, 6th ed.

USA: Addison-Wesley Publishing Company, 2010.
[11] “Resource Description Framework,” https://www.w3.org/RDF.
[12] “Web Ontology Language,” https://www.w3.org/OWL.
[13] S. H. Garlik, A. Seaborne, and E. Prud’hommeaux, “SPARQL 1.1 query

language,” http://www.w3.org/TR/sparql11-query/. [Online]. Available:
http://www.w3.org/TR/sparql11-query/

[14] Y. Xin, I. Baldin, J. Chase, and K. Ogan, “Leveraging semantic web
technologies for managing resources in a multi-domain infrastructure-
as-a-service environment,” arXiv preprint arXiv:1403.0949, 2014.

[15] A. Willner, M. Giatili, P. Grosso, C. Papagianni, M. Morsey, and
I. Baldin, “Using semantic web technologies to query and manage
information within federated cyber-infrastructures,” Data, vol. 2, no. 3,
2017. [Online]. Available: http://www.mdpi.com/2306-5729/2/3/21

[16] L. T. Detwiler, D. Suciu, and J. F. Brinkley, “Regular paths in SPARQL:
Querying the NCI thesaurus,” in AMIA Annual Symposium Proceedings,
vol. 2008. American Medical Informatics Association, 2008, p. 161.

[17] S. Gao, S. Shrivastava, K. O. (Anyanwu), I. Baldin, and Y. Xin,
“Evaluating Path Query Mechanisms as a Foundation for SDN Network
Control,” in Proceedings of the 4th IEEE Conference on Network
Softwarization. IEEE, 2018.

[18] B. Parsia and E. Sirin, “Pellet: An OWL DL reasoner,” in Third
International Semantic Web Conference-Poster, 2004, p. 18.

[19] R. Shearer, B. Motik, and I. Horrocks, “HermiT: A highly-efficient OWL
reasoner,” in Proceedings of the 5th International Workshop on OWL:
Experiences and Directions (OWLED 2008), 2008, pp. 26–27.

[20] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical owl-dl reasoner,” Web Semantics: science, services and agents
on the World Wide Web, vol. 5, no. 2, pp. 51–53, 2007.

[21] H. S. W. Programme, “Jena: a Java framework for building Semantic
Web applications,” http://jena.sourceforge.net/.

[22] “Blazegraph Website,” https://www.blazegraph.com/.
[23] R. E. Tarjan, “Fast algorithms for solving path problems,” J.

ACM, vol. 28, no. 3, pp. 594–614, Jul. 1981. [Online]. Available:
http://doi.acm.org/10.1145/322261.322273

[24] J. L. Sobrinho, “Network routing with path vector protocols: Theory and
applications,” in Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications.
ACM, 2003, pp. 49–60.

[25] T. G. Griffin and J. L. Sobrinho, “Metarouting,” ACM SIGCOMM
Computer Communication Review, vol. 35, no. 4, pp. 1–12, 2005.

[26] J. F. Botero, M. Molina, X. Hesselbach-Serra, and J. R. Amazonas,
“A novel paths algebra-based strategy to flexibly solve the link
mapping stage of VNE problems,” Journal of Network and Computer
Applications, vol. 36, no. 6, pp. 1735 – 1752, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804513000672

[27] P. J. Leach, M. Mealling, and R. Salz, “A universally unique
identifier (uuid) urn namespace,” Internet Requests for Comments, RFC
Editor, RFC 4122, July 2005, http://www.rfc-editor.org/rfc/rfc4122.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4122.txt

[28] COMET github repository, https://github.com/RENCI-NRIG/
COMET-Accumulo.

[29] “Apache accumulo,” https://accumulo.apache.org/.
[30] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield,

“Plutarch: An Argument for Network Pluralism,” SIGCOMM Comput.
Commun. Rev., vol. 33, no. 4, pp. 258–266, Aug. 2003. [Online].
Available: http://doi.acm.org/10.1145/972426.944763

[31] N. Feamster, L. Gao, and J. Rexford, “CABO: Concurrent architectures
are better than one,” NSF NeTS FIND Initiative, http://www. nets-find.
net/Funded/Cabo. php, 2006.

[32] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI veritas: realistic and controlled network experimentation,” ACM
SIGCOMM Computer Communication Review, vol. 36, no. 4, pp. 3–14,
2006.

[33] Y. Xin, I. Baldin, A. Mandal, P. Ruth, and J. Chase, “Towards an exper-
imental legoland: Slice modification and recovery in ExoGENI testbed,”
in International Conference on Testbeds and Research Infrastructures.
Springer, 2016, pp. 35–45.

[34] Y. Yao, Q. Cao, J. Chase, P. Ruth, I. Baldin, Y. Xin, and A. Mandal,
“Slice-based network transit service: Inter-domain l2 networking on exo-
geni,” in Computer Communications Workshops (INFOCOM WKSHPS),
2017 IEEE Conference on. IEEE, 2017, pp. 736–741.

[35] Q. Cao, V. Thummala, J. S. Chase, Y. Yao, and B. Xie, “Certificate
Linking and Caching for Logical Trust,” http://arxiv.org/abs/1701.06562,
2016.

[36] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[37] N. Grozev and R. Buyya, “Inter-cloud architectures and application
brokering: Taxonomy and survey,” Softw. Pract. Exper., vol. 44, no. 3,
pp. 369–390, Mar. 2014. [Online]. Available: http://dx.doi.org/10.1002/
spe.2168

[38] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services,” in Algorithms and Architectures for Parallel Processing, C.-H.
Hsu, L. T. Yang, J. H. Park, and S.-S. Yeo, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 13–31.

[39] M. Gall, A. Schneider, and N. Fallenbeck, “An architecture for com-
munity clouds using concepts of the intercloud,” in 2013 IEEE 27th
International Conference on Advanced Information Networking and
Applications (AINA), March 2013, pp. 74–81.

[40] G. Manno, W. W. Smari, and L. Spalazzi, “Fcfa: A semantic-based fed-
erated cloud framework architecture,” in 2012 International Conference
on High Performance Computing Simulation (HPCS), July 2012, pp.
42–52.

[41] D. Bernstein, V. Deepak, and R. Chang, “Draft standard for intercloud
interoperability and federation (siif),” 2015.

[42] B. D. Martino, G. Cretella, A. Esposito, A. Willner, A. Alloush,
D. Bernstein, D. Vij, and J. Weinman, “Towards an ontology-based
intercloud resource catalogue – the ieee p2302 intercloud approach for
a semantic resource exchange,” in 2015 IEEE International Conference
on Cloud Engineering, March 2015, pp. 458–464.

[43] F. Moscato, R. Aversa, B. D. Martino, T. Forti, and V. Munteanu, “An
analysis of mosaic ontology for cloud resources annotation,” in 2011
Federated Conference on Computer Science and Information Systems
(FedCSIS), Sept 2011, pp. 973–980.

[44] I. Santana-Prez and M. S. Prez-Hern’ndez, “A semantic scheduler archi-
tecture for federated hybrid clouds,” in 2012 IEEE Fifth International
Conference on Cloud Computing, June 2012, pp. 384–391.

[45] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, “An effective
architecture for automated appliance management system applying
ontology-based cloud discovery,” in 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, May 2010, pp. 104–
112.

[46] L. D. Ngan and R. Kanagasabai, “Owl-s based semantic cloud service
broker,” in 2012 IEEE 19th International Conference on Web Services,
June 2012, pp. 560–567.

[47] C. Aranda, O. Corby, S. Das, L. Feigenbaum, P. Gearon, B. Glimm,
S. Harris, S. Hawke, I. Herman, and N. Humfrey, “Sparql 1.1 overview,”
https://www.w3.org/TR/2012/PR-sparql11-overview-20121108/.

[48] A. K. Y. Wong, P. Ray, N. Parameswaran, and J. Strassner, “Ontology
mapping for the interoperability problem in network management,” IEEE
Journal on Selected Areas in Communications, vol. 23, no. 10, pp. 2058–
2068, Oct 2005.

[49] “Ndl demonstration site at glif,” http://ndl.uva.netherlight.nl/.
[50] “Network description language,” http://sne.science.uva.nl/ndl/.
[51] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of

sparql,” ACM Trans. Database Syst., vol. 34, no. 3, pp. 16:1–16:45, Sep.
2009. [Online]. Available: http://doi.acm.org/10.1145/1567274.1567278

[52] J. van der Ham, P. Grosso, R. van der Pol, A. Toonk, and C. de Laat, “Us-
ing the network description language in optical networks,” in IFIP/IEEE
International Symposium on Integrated Network Management, May
2007, pp. 199–205.

[53] P. Mell and T. Grance, “The nist definition of cloud computing,” Special
Publication 800-145, Recommendations of the National Institute of
Standards and Technology, September 2011.

[54] R. Nyren, A. Edmonds, A. Papaspyrou, and T. Metsch, “Open Cloud
Computing Interface - Core,” GFD-P-R.183, OCCI-WG, Technical Re-
port, 2011.

[55] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“Sdx: A software defined internet exchange,” in Proceedings of the
2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14. New
York, NY, USA: ACM, 2014, pp. 551–562. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2626300

[56] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster,
J. Rexford, and L. Vanbever, “An industrial-scale software defined
internet exchange point,” in 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). Santa Clara, CA:
USENIX Association, 2016, pp. 1–14. [Online]. Available: https://www.
usenix.org/conference/nsdi16/technical-sessions/presentation/gupta

[57] “ica8 powers french touix sdn-driven internet exchange,” http://ubm.io/
1Vc0SLE, 2015.

[58] J. Stringer, D. Pemberton, Q. Fu, C. Lorier, R. Nelson, J. Bailey, C. N. A.
Corrła, and C. E. Rothenberg, “Cardigan: Sdn distributed routing fabric
going live at an internet exchange,” in 2014 IEEE Symposium on
Computers and Communications (ISCC), June 2014, pp. 1–7.

[59] J. Bailey, D. Pemberton, A. Linton, C. Pelsser, and R. Bush,
“Enforcing rpki-based routing policy on the data plane at an
internet exchange,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14. New
York, NY, USA: ACM, 2014, pp. 211–212. [Online]. Available:
http://doi.acm.org/10.1145/2620728.2620769

[60] Y. Yao, Q. Cao, R. Farias, J. Chase, V. Orlikowski, P. Ruth, M. Cevik,
C. Wang, and N. Buraglio, “Toward live inter-domain network services
on the exogeni testbed,” in IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), April
2018, pp. 772–777.

[61] A. Mandal, P. Ruth, I. Baldin, R. F. D. Silva, and E. Deelman, “Toward
prioritization of data flows for scientific workflows using virtual software
defined exchanges,” in 2017 IEEE 13th International Conference on e-
Science (e-Science), Oct 2017, pp. 566–575.

[62] C. M. Ellison, “SPKI,” in Encyclopedia of Cryptography and Security.
Springer, 2011, pp. 1243–1245.

[63] R. L. Rivest and B. Lampson, “SDSI-a simple distributed security
infrastructure.” Crypto, 1996.

[64] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L.
Rivest, “Certificate chain discovery in SPKI/SDSI,” Journal of Computer
Security, vol. 9, no. 4, pp. 285–322, 2001.

[65] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, “First ex-
periences using XACML for access control in distributed systems,” in
Proceedings of the 2003 ACM workshop on XML security. ACM, 2003,
pp. 25–37.

[66] M. Matthew Greenberg and C. Marks, “The Soundness and Complete-
ness of Margrave with Respect to a Subset of XACML,” 09 2018.

