
Enabling Workflow Repeatability with Virtualization
Support ∗

Fan Jiang, Claris Castillo, Charles Schmitt, Anirban Mandal, Paul Ruth, Ilya Baldin
Renaissance Computing Institute

University of North Carolina Chapel Hill
Chapel Hill, NC, USA

{dcvan,claris,cschmitt,anirban,paul,ibaldin}@renci.org

ABSTRACT
The value of work�ows to the scienti�c community spans over
time and space. Not only results but also performance and re-
source consumption of a work�ow need to be replayed over time
and in varying environments. Achieving such repeatability in prac-
tice is challenging due to changes in software and infrastructure
over time. In this work, we introduce a new abstraction that builds
on the concept of virtual appliance to enable work�ow repeatabil-
ity. We have also developed a novel architecture to leverage this
abstraction and realized it into a system implementation that sup-
ports a popular work�ow management system and builds on a fed-
erated in-production environment. We demonstrate the e�ective-
ness of our approach by examining various aspects of work�ow
repeatability. Our results show that work�ows can be replayed
with 2% �delity when considering their walltime as performance
metric.

Keywords
work�ow; repeatability; virtual appliance;

1. INTRODUCTION
Conceptually, work�ows are collaborative artifacts. They en-

code scienti�c methods that allow for preservation, replay and
reuse, which are key ingredients for scienti�c collaboration. As
work�ows need to be replayed over time and in di�erent envi-
ronments, enabling work�ow repeatability is of great importance
to the scienti�c community. Others in the community [4][5][19]
have developed approaches to e�ectively capturing work�ow prop-
erties for re-execution. However, these approaches aim at repro-
ducing the same results across work�ow executions and typically
encapsulate data and code of a work�ow, but seldom include in-
formation about the infrastructure and its resources. Absence of
this information hinders work�ow execution due to issues such as
availability of infrastructure, compatibility issues caused by soft-
ware updates, invalid con�guration due to changes in runtime, etc.

In general, the problem of computational repeatability has been
recognized by the scienti�c community [10][11][21]. Re-execution
∗SC15, November 15-20, 2015, Austin, Texas, USA 978-1-4799-
5500-8/14/$31.00 ©2015 IEEE
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WORKS ’15 November 15–20, 2015, Austin, TX, USA
© 2015 ACM. ISBN 978-1-4503-3989-6/15/11. . . $15.00

DOI: 10.475/2822332.2822340

of work�ows presents unique challenges as compared to tradi-
tional compute paradigms. These challenges stem from the fact
that their execution often span over multiple geographically dis-
tributed resources. With the adoption of federated Cloud environ-
ments, such as ExoGENI [9] and FutureGrid [22], the problem is
exacerbated further since resources availability is subjected to the
policies of the federated sites.

Moreover, performance is also a crucial aspect for work�ow
replay. Note that in this paper we use "re-execute" and "replay"
interchangeably when referring to repetition of work�ow execu-
tion. There are two aspects of work�ow performance we are con-
cerned with in this work. Firstly, a work�ow is expected to exhibit
comparable performance with equivalent resources across time.
Secondly, control over resource and infrastructure con�guration
should yield predictable work�ow performance to scientists who
want to re-execute work�ows under di�erent resource and infras-
tructure constraints.

Virtual machines (VMs) have been proposed as the only mech-
anisms for ensuring recomputability of experiments and the ba-
sic model of repeatable research [11] [21]. More recently, virtual
appliances have been adopted as a solutions to reducing develop-
ment and distribution costs [20]. Virtual appliances are pre-built,
self-contained and pre-con�gured software solution comprising of
multiple VMs that are packaged, updated and managed as a unit.
We subscribe to this vision and argue that to enable work�ow
re-execution this concept has to go beyond the virtualization of
computation - in the form of VMs - to include the execution en-
vironment (i.e. the network, storage and data sources) whenever
possible.

To this end we introduce a new resource abstraction, calledwork-
�ow virtual appliance (WVA). A WVA is a virtual appliance that en-
codes every piece of the puzzle for deploying a work�ow, includ-
ing the software, data and its execution environment. To achieve
this it leverages two state-of-the-art technologies: (1) virtualiza-
tion technology to encapsulate software stack and its con�gura-
tion and (2) virtual infrastructure abstraction, namely slice, in-
troduced in the context of Networked-Infrastructure-As-A-Service
(NIaaS) [9], which provides the resource description of mutually
isolated pieces of networked virtual infrastructure carved out from
multiple Cloud and network transit providers.

A WVA is realized using a pre-integrated, self-contained object
(i.e. �le) that contains information on (1) the full suite of software
(e.g. work�ow management software) and the con�guration re-
quired for executing a given work�ow, and (2) the slice, description
of its virtualized environment (e.g. VM images, resource capaci-
ties, etc.). This information is in the form of a machine-readable
object format that can be instantiated (i.e., deployed and replayed)
in a NIaaS Cloud environment in the same manner a VM image is
used to instantiate a VM. A WVA �le contains static content that

can be transmitted across the network for sharing, or registered
with some data store for later retrieval. This e�ectively addresses
the basic problems of work�ow sharing and work�ow decay [24]
that the scienti�c community faces today. Moreover, coupling the
application with the virtual infrastructure into a virtual appliance
enables the development of novel capabilities such as checkpoint-
ing work�ow environments.

We have realized these ideas into the architecture of a Cloud-
based system, named WRAP (Work�ow Repeat APpliance), that
builds around the concept of WVA. WRAP consists of a multi-
modular middleware that presents users with relevant interfaces
for composing, modifying and storing WVA objects as well as de-
ploying (executing) and snapshotting work�ow environments. In
WRAP, WVA objects are the units of deployment and therefore, a
scientist only needs to provide a correct WVA object for executing
a work�ow. WRAP follows a Service Oriented Architecture (SOA)
model and is composed of a set of services that together automate
the deployment of virtual infrastructure on the NIaaS and the ex-
ecution and management of the work�ow. In addition, it builds
on state-of-the-art virtualization technology to allow scientists to
snapshot the state of their work�ows and hosting infrastructure
into a completely new WVA object for sharing or re-execution in
the future.

We have evaluated the feasibility and e�ectiveness of WRAP in
enhancing work�ow repeatability against real work�ows from the
genomic science and astronomy domains. Our results demonstrate
thatWRAP can signi�cantly reduce the complexity experienced by
scientists in sharing and replaying work�ows. More importantly,
we also show that work�ows can be replayed with high perfor-
mance �delity even for signi�cant infrastructure modi�cations in
a shared federated Cloud environment in production. For example,
our work�ows exhibit performance variance of less than 1 % and
3% for changes to the execution sites and execution times (span-
ning over several weeks), respectively.

In summary, our contributions in this paper are two-fold:

• We introduce a new abstraction for work�ows (WVA) which
builds on the concept of virtual appliance and encapsulates
the entire work�ow execution environment, including both
work�ow and infrastructure information, to enable work-
�ow repeatability and improve scienti�c productivity. To
the best of our knowledge, this is the �rst work to explore
the use of virtual appliance for encapsulating execution en-
vironment including both networked infrastructure and work-
�ow application.

• We present a novel software architecture to enable work-
�ow repeatability on IaaS environments using WVA abstrac-
tion. The architecture is realized into a system implementa-
tion that supports a popular work�ow management system
(Pegasus [8]) and builds on an in-production NIaaS environ-
ment(ExoGENI [9]). We further evaluate the e�ectiveness
and e�ciency of our system against real workloads.

2. RELATED WORK
Seminal work in computational repeatability in a broad context

includes [11], [21] and [10]. In [11] the author proposes VMs as
the only credible mechanisms for replaying computation. Further-
more, the author propses a set of standard practices for using VMs
to replicate experiments in Computer Science. In [21] the authors
explore a repeatable model consisting of performing one’s exper-
iment within a VM hosted by some Cloud providers. When the
experiment is complete, the experimenter snapshot the VM and
make it public for others to use. WRAP goes beyond this model in

that it captures complete networked infrastructure consisting of
multiple VMs, storage, data sources and networks spanning over
multiple network provides by relying on existing appliances (slice).

In [18] the authors present one of the seminal works in work-
�ow conservation. They introduce pack as the unit of sharing. A
pack is similar to a WVA in that it consists of a package of compo-
nents that make up an experiment. However, a pack only includes
content pertaining to ownership, intellectual property and prove-
nance of the work�ow. Hence, it is not deployable. This is in con-
trast to a WVA object which is self-contained and can be deployed
on a NIaaS.

More recently, in [19] the authors propose a semantic-based ap-
proach to produce work�ow speci�cations that can be used for re-
execution. The speci�cation includes a semantic description for
both the work�ow and the resources. We believe that providing
such speci�cation is not a trivial task for domain scientists with
limited computing skills thus hindering the adoption of this ap-
proach. Previous work done by the authors of [12] is also relevant
in that it consists of a semantic approach for describing work�ow
components. This work however does not consider resources or
infrastructure.

3. BACKGROUND AND MOTIVATION
In this section, we introduce three state-of-the-art technologies

used in our work. We further motivate our work by describing
step-by-step the process to replay a work�ow using these tech-
nologies. We hope that by doing this readers without hands-on
experience executing work�ows can develop a strong intuition
of the complexity behind replaying a work�ow across time and
space.

3.1 Used Technologies

3.1.1 HTCondor
HTCondor is a compute framework that enables High Through-

put Computing (HTC) on large collections over distributed com-
puting resources [13]. It implements a "master/slave" paradigm
to take advantage of parallelism and has been adopted in experi-
ments with scienti�c work�ows. A typical HTCondor deployment
is composed of a master node and a number of slave nodes. The
master performs job scheduling. It matches computation jobs to
slave nodes based on job requirements and the characteristics of
the nodes. The slave nodes are responsible for making progress
on the jobs. Classi�ed Advertisements (classads) are exchanged
between master and slave nodes to schedule jobs and report cur-
rent state and resource availability of each slave node.

3.1.2 Pegasus
The Pegasus Work�ow Management System [8] has been used

by scientists in many domains to execute large-scale computa-
tional work�ows on a variety of cyberinfrastructure, ranging from
local desktops to campus clusters, grids, and commercial and aca-
demic Clouds.

The key idea behind Pegasus is the separation of the work�ow
description from the description of the execution environment,
which results in work�ow portability, and the ability for the work-
�ow management system to make performance focused decisions
at “planning time” and at “runtime”. This separation is the key
di�erentiator between Pegasus and the other work�ow manage-
ment systems such as Kepler [3] and Taverna [23]. In fact, both
Kepler and Taverna have the SOA; hence, the resource model maps
computation directly to web services. A Pegasus work�ow on the
other hand can run on any resource platform as long as the Pega-
sus software stack –including HTCondor– is installed, con�gured

and available. This resource model allows for using virtual in-
frastructure which is in full alignment with the concept of virtual
appliance which serves as the basis of our work.

3.1.3 ExoGENI
The ExoGENI testbed, as shown in Figure 1, consists of Cloud

sites (racks) on host campuses, linked with national research net-
works through programmable exchange points. Networked Cloud
infrastructures link distributed resources into connected arrange-
ments, slices, targeted at solving a speci�c problem. This slice
abstraction is central to provide mutually isolated pieces of net-
worked virtual infrastructure built to order the guest applications.
Compute and storage resources are obtained from private Clouds
at the infrastructure’s edge. Network resources are obtained from
edge providers and national fabrics using traditional VLAN-based
switching and OpenFlow. Using ORCA [7] (Open Resource Con-
trol Architecture) control framework software, ExoGENI o�ers a
powerful uni�ed hosting platform for deeply networked, multi-
domain, multi-site Cloud applications. What sets ExoGENI apart
from most Cloud systems is its ability to allocate bandwidth-provisioned
dedicated layer-2 private networks between compute resources
across Cloud sites. These dedicated layer-2 networks enable fast
transfer of data �les between computational tasks.

In the context of work�ows, ExoGENI has been used to host
scienti�c work�ows from multiple domain sciences and impor-
tant e�orts are currently enhancing its control framework to bet-
ter support them [14].

3.2 Motivation
To further motivate our work, let us describe the process to

compose, run and share a Pegasus work�ow on a NIaaS such as
ExoGENI. First, the scientist requests the deployment of a slice
consisting of a network of VMs potentially allocated across mul-
tiple Cloud sites. Figure 5 depicts one slice used in our evaluation.
Once the VMs are up and running, the user logins to install and
con�gure Pegasus/HTCondor software.

Following the procurement and con�guration of the infrastruc-
ture, the user creates a Pegasus work�ow. To do this, she logins
into the master VM node and composes an abstract representation
of the work�ow using a Pegasus high-level speci�cation language
called DAX. A work�ow abstract consists of computation tasks
(programs) and data. These abstract artifacts are represented as
logical names. In order to execute the work�ow, its abstract repre-
sentation is converted into an executable representation consum-
able by HTCondor called Dagman. This conversion requires a set
of pre-populated catalogs with the mappings of each logical entity
(e.g. dataset) to its corresponding physical location (e.g. �le paths,
URLs). For instance, for every computation task the scientist has
to provide the physical location of the application, e.g. OS require-
ments, environment variables and any other con�guration needed
by HTCondor to identify a suitable compute host.

In order to replay this work�ow in a di�erent environment a
user has to procure a virtual environment that follows closely the
original one. This step includes the deployment and con�guration
of virtual infrastructure as well as the installation and con�gu-
ration of the software suite. The process of replicating the same
environment involves substantial interaction with IT sta�. Fur-
thermore, all the application-speci�c information, including the
DAX �le, programs and data, needs to be shared. Finally, cata-
logs must be populated in advance with a mapping of logical to
physical entities that re�ects the new infrastructure.

It is worth noticing that in the case of work�ow management
systems such as Kepler [3] and Taverna [23] users face even higher
technical barriers for sharing and replaying work�ows. This is

due to the fact that both systems rely on third-party services for
running computation.

Furthermore, changes in the compute environment are the norm.
A minor change may have tremendous e�ect on work�ow perfor-
mance. For a scientist, in order to know the e�ect of these changes
in advance, she needs in-depth knowledge of the workload. For
instance, a data-intensive work�ow may exhibit low performance
when running on VMs with larger cpu allocation but marginally
smaller network allocation. This is particularly important as users
aim to maximize their return on investment (ROI) in a Cloud busi-
ness model and have higher Quality of Service (QoS) demands
(e.g., meeting deadlines). As part of our research agenda we are
concerned with developing mechanisms that allow scientists to
predict work�ow performance in the presence of changes in the
virtual environment. In Section 5 we demonstrate that WRAP is a
key enabler to attain this goal by encapsulating both virtual infras-
tructure and application into one single appliance and allowing
users to modify resource capacities and capabilities.

4. WRAP ENVIRONMENT

4.1 Workflow Virtual Appliance (WVA)
A WVA is a pre-built self-contained object implemented as a �le

that describes the full stack of hardware and software required for
a work�ow ensemble. A work�ow ensemble consists of the exe-
cution of multiple instances of the same work�ow with di�erent
data input. Listing 1 shows an example of a WVA describing an
ensemble of two genomic analysis work�ow instances.

A WVA is composed of two major �elds - ensemble and infras-
tructure - to describe the application and infrastructure used in a
speci�c work�ow.

The ensemble �eld contains all the application information needed
for con�guring the work�ow management system and instanti-
ating work�ow instances. The work�ow management system is
speci�ed in the platform �eld. The con�g �eld includes con�gura-
tion properties speci�c to the work�ow management system. The
work�ow is described in the work�ow �eld with a speci�c schema
consumable by the work�ow management system. For instance,
Pegasus uses DAG. Discussion on work�ow composition in Pega-
sus is beyond the scope of this paper. We assume that the scientist
possesses knowledge in developing work�ow descriptions for a
speci�c work�ow management system she chooses to use. Work-
�ow instances are included in the work�ow-instances �eld. They
di�er from each other mainly in their input datasets, which are
presented with URIs in the input �eld. Output data �les of each
work�ow instance will be transferred to the location speci�ed in
the output �eld. The performance measurements are aggregated
for each work�ow instance as shown in the performance �eld of
each instance. Besides the end-to-end execution time (walltime)
shown in 1, we also collect CPU and memory utilization, disk
read/write rates and network send/recv rates in current implemen-
tation.

The virtual infrastructure, referred here as a slice to follow Exo-
GENI terminology is described in the infrastructure �eld. ExoGENI
encodes resource descriptions using the Netowrk Description Lan-
guage (NDL) language [2]. In this �eld we include all the param-
eters that are relevant to the work�ow including the VM images,
resource capacities, storage, etc. The image �eld contains a ref-
erence to a VM image with pre-installed executables. Master and
slave nodes are declared individually with VM type and links con-
necting them. A VM type maps to a speci�c combination of com-
puting resources. In this example we use ExoGENI as the testbed
and the VM type is one of the following types: small (1 core, 1GB

Figure 1: ExoGENI
RAM and 10GB disk), medium (1 core, 3GB RAM and 25GB disk),
large (2 cores, 6GB RAM and 50GB disk) and extra large (4 cores,
12GB RAM and 75GB disk). ExoGENI supports network attached
storage. The capacity of the storage (GB) and its corresponding
network link (Mb/s) are de�ned in the size and links �elds, respec-
tively. In NDL, links can be referenced in entities, entities can be
interconnected and a infrastructure topology shown in Figure 5
can be described.

{
"id":"...",
"name":"Genomic analysis ensemble",
"ensemble":{

"platform":"pegasus",
"config":{...},
"workflow":{

"executables":["bwa",...],
"jobs":[

{"id":"1","cmd":"bwa aln","input":[1],"output":[3]},
{"id":"2","cmd":"bwa aln","input":[2],"output":[4]},

...
],
"dependencies":{"1":["2"],"2":["3"],...},
...

},
"workflow-instances":[

{
"id":0,
"input":[

"irods:///user/data/SRR824936_1.filt.fastq",
...

],
"output":"scp://172.16.1.1:22/output/",
"performance":{

"walltime":{"max":17010,"min":16540,"avg":16680},
...

}},
...

]},
"infrastructure":{

"images":[
{"id":"g0","url":"http://wva.renci.org/geno/image"},
...

],
"nodes":[

{"id":"m0","site":"osf","image":"g0","role":"master",...},
{"id":"db0","size":30,"site":"osf","role":"storage",...},
{"id":"s0","site":"rci","image":"g0","role":"slave",...},
...

],
"links":[

{"id":"l1","bandwidth":100,"source":"m0","target":"db0
"},

{"id":"l2","bandwidth":500,"source":"m0","target":"s0
"},

...
],
"reservation":24,

}
}

Listing 1: WVA example

It is worth noting that most �elds in a WVA �le except those
pertaining to performance are immutable, because any change of
these �eld will result in a di�erent work�ow execution environ-
ment. Hence, users can create newer version of a WVA object.
Thus, WRAP provides provenance capabilities on WVA objects.

4.2 WRAP Architecture
WRAP is a platform that manages the construction, monitor-

ing and replication of virtualized environments built upon WVAs.
In WRAP , WVA is the unit of deployment and execution. It fol-
lows the Service Oriented Architecture (SOA) and integrates a set
of RESTful services where each service is self-contained and ex-
poses a well-de�ned API to the others. The services are optionally
uni�ed with a frontend to increase the usability of the system. Fig-
ure 2 depicts the key components of our system.

4.2.1 WVA Catalog
The WVA Catalog stores WVA objects that can be retrieved for

work�ow re-execution. It is backed with MongoDB [15] and presents
a CRUD API for creating, reading, updating and deleting WVAs.

Figure 2: WRAP architecture
Users can retrieve an existing WVA for reconstructing an WVA
environment or delete obsolete WVAs through the API. However,
users are restricted from creating new WVAs directly on the WVA
Catalog. Instead, the WVA Factory, which will be introduced later
in this Section, will perform the operation on behalf of the user. By
doing this we ensure the correcness of WVAs stored in the WVA
Catalog. The WVA Factory is the only component permitted to
update an active WVA.

4.2.2 WVA Controller
The WVA Controller is the main actuator entity of the system.

It translates user requests into requests consumable by the NI-
aaS service provider, submits the translated requests to the NIaaS
service provider for ful�llment and noti�es the user of its status.
Among the various user requests handled by the WVA Controller,
we discuss two major types of request in detail: a deployment and
snapshot request.

• The deployment request includes almost the WVA in its to-
tality. The WVA Controller reassemble �elds extracted from
the WVA object into a NDL request issued to the NIaaS for
procurement. By the same token, the WVA Controller com-
pose a DAG �le from the information included in the work-
�ow and work�ow-instances �elds in a format compatible
with the work�ow management software. A con�guration
�le for the work�ow management software is also created
using properties extracted from the con�g �eld. We use VM
boot scripts to initialize the newly established virtualized
environment. Boot scripts are scripts that encode initial-
ization actions that must be executed immediately after the
VM boots. The boot script con�gures the work�ow manage-
ment software with the con�guration �le and launches the
work�ow instances using the DAG �les on the master node.
It also starts the monitoring processes, which automatically
collects performance measurements from the virtualized en-
vironment.

• The snapshot request is issued by a user to replicate an ac-
tive virtualized environment entirely with its current state
at a given point in time. The replication is enabled by the
VM snapshotting feature available in modern virtualization
technology, which allows users to restore a VM to a particu-
lar state by providing change log for the virtual disk. Work-

�ow management software suites like Pegasus also have work-
�ow recovery mechanism that allows work�ow instances to
be suspended and restored to the previous state later on. The
snapshot of a virtualized environment occurs at both ap-
plication and infrastructure levels. At the application level,
work�ow instances are suspended and their states are per-
sisted immediately on receipt of the snapshot request. At in-
frastructure level, current virtual infrastructure is captured.
The WVA Controller requests the NIaaS service provider to
take a snapshot of the master node on which states of hosted
work�ow instances are stored. Besides, all the resource pa-
rameters of the virtual infrastructure, including those dy-
namically allocated such as internal IP addresses, are cap-
tured in order to keep the replicated environment consistent
with the original one from all aspects. A new NDL request
is created with new image reference to the VM snapshot and
captured resource parameters of the virtual infrastructure.
The new NDL request together with the old WVA are sent
to the WVA Factory to create a new WVA.

4.2.3 WVA Factory
The role of the WVA Factory is to compose new WVAs and

update existing WVAs with performance measurements received
from active WVAs. New WVA objects are validated before they are
stored in the WVA Catalog. As of writing of this paper only syntax
checking is performed to validate a WVA object. If the validation
fails, it noti�es the user about the failure with details about the
anomaly found. Valid WVA objects are stored in the WVA Catalog.
There is also an aggregator process running on the WVA Factory,
which is a part of the monitoring framework used in the system.
We will introduce the process in detail later.

4.2.4 Monitoring Framework
The monitoring framework consists of an aggregator process re-

siding in the WVA Factory and a set of collector processes dis-
tributed on both master and slave node VMs. The aggregator pro-
cess listens on messages containing performance measurements
data from the collector processes. Upon completion of an ensem-
ble, the aggregate process aggregates the measurements and up-
dates the corresponding WVA in the WVA Catalog. The collector
processes collect performance measurements from the VMs in the
virtual infrastructure. The collector process running on the mas-

(a) Genomic

(b) Montage
Figure 3: Work�ows used in evaluation

ter node only captures work�ow-speci�c measurements, includ-
ing walltime. It reports the measurements to the aggregator every
30 seconds. The collector processes on the slave node VMs focus
on system measurements, including CPU and memory utilization,
disk I/O rate and network I/O rate. Both the master and the col-
lector processes are implemented in Python. The process on a
slave node VM starts monitoring only when a job is running in the
VM. Measurements are collected and reported every 2 seconds to
match the time granularity of very short jobs. The aggregator and
the collector processes communicate with each other using asyn-
chronous messaging implemented using RabbitMQ [17] because
of its scalability and performance.

5. EVALUATION
We have performed an evaluation with real workloads to val-

idate WRAP ’s ability to enable work�ow repeatability. We also
show how WRAP can facilitate performance predictability. In this
section, we also discuss our results.

5.1 Experiments
We perform a set of experiments to investigate the level of �-

delity of execution achieved when the work�ows are executed at

bwa_
1

bwa_
2

bwa_
3

pica
rd

_4

sa
m

to
ols

_5

pica
rd

_6

sa
m

to
ols

_7

gat
k_

8

gat
k_

9

pica
rd

_1
0

sa
m

to
ols

_1
1

gat
k_

12
0

20

40

60

80

100

120

140

U
ti

liz
a
ti

o
n
(%

)

0

20

40

60

80

100

I/
O

 R
a
te

(M
B

/s
)

CPU util. Memory util. Read rate Write rate

(a) Genomic

m
Pr

oje
ct

PP

m
Diff

Fit

m
Con

ca
tF

it

m
BgMod

el

m
Bac

kg
ro

und

m
Im

gtb
l

m
Add

m
Shrin

k

m
JPE

G
0

20

40

60

80

100

U
ti

liz
a
ti

o
n
(%

)

0

1

2

3

4

5

6

7

8

I/
O

 R
a
te

(M
B

/s
)

CPU util. Memory util. Read rate Write rate

(b) Montage
Figure 4: Resource demand for genomic and Montage

di�erent time and using resources from di�erent ExoGENI sites.
We also examine the impact on performance of three factors: VM
capacity, number of VMs and capacity of network links.

We consider user-centric and system-centric performance met-
rics to drive our evaluation. We use walltime as user-centric per-
formance metric and CPU utilization, memory utilization and disk
I/O rates as system-centric metrics. The performance measure-
ments are collected and aggregated using the monitoring frame-
work built in WRAP .

Our experiments are hosted in ExoGENI. By doing this we are
able to specify resource capacities of the hosting virtual infrastruc-
tures including VMs (CPU, memory), storage and network. More
importantly, ExoGENI allows us to de�ne network connectivity
between compute nodes (VMs) thus. VM types currently available
in ExoGENI are shown in Table 1. We also specify the bandwidth
allocated to every network link in the virtual infrastructures. In
addition, the experiments were run over 10 of ExoGENI’s world-
wide distributed sites shown in Figure 1, thus stressing the ability
of WRAP to replay work�ows at scale and under high levels of
substrate heterogeneity.

Name Cores RAM(GB) Disk(GB)
Small 1 1 10
Medium 1 3 25
Large 2 6 50
XLarge 4 12 75

Table 1: ExoGENI Resource Types

To drive our experiments we use two real work�ows: The ex-
omic alignment work�ow [16] (Figure 3a) and the Montage [1]
work�ow (Figure 3b). The exomic alignment work�ow, referred to
as genomic work�ow, is based on a production work�ow for clin-

Figure 5: Multinode topology

ical genomics at University of North Carolina at Chapel Hill. It is
composed of a pipeline of 12 jobs as depicted in Figure 3a. It has an
input and an output of 352MB of exome sequence data and 1.1GB
of aligned exomes, respectively. It also generates 1.4GB of inter-
mediate data which have to be transferred over the network during
its execution. The Montage work�ow is an astronomical work�ow
created by NASA/IPAC for generating one square degree 2MASS
J-band mosaic centered on M17 [6] [1]. It consists of a combina-
tion of parallel and pipelined jobs as depicted in Figure 3b. The
Montage work�ow has an input and an output of 4.9GB of Flex-
ible Image Transport System (FITS) images and 7.4GB of mosaic
images, respectively. The amount of intermediate data it generates
amounts to 17GB. Figure 4 shows the resource demand for CPU,
memory and I/O for both work�ows. As we can observe, the Mon-
tage work�ow is more data-intensive than the genomic work�ow
as it involves more data transfers.

We use Pegasus to manage work�ows, which relies on HTCon-
dor as its compute platform as described in Section 3. We use two
virtual infrastructure topologies, standalone and multinode (Fig-
ure 5), to accommodate di�erent work�ows requirements. The
standalone infrastructure is composed of one single VM, which in-
cludes all the software components required for work�ow execu-
tion and runs as both a master and a slave node. Work�ows with
serial jobs such as the genomic work�ow can bene�t from this in-
frastructure because of its simplicity, e�ciency and low cost. The
multinode infrastructure is designed for work�ows with parallel
jobs, such as Montage. In this infrastructure, there is a master
node VM dedicated for work�ow management and multiple inter-
connected slave node VMs. Work�ow ensembles with pipelined
work�ows can also take advantage of this infrastructure to cen-
tralize management of individual work�ow instances on the mas-
ter node, reducing resource overhead on work�ow management.
To study the impact of network capacity on work�ow performance,
we have the slave nodes stage intermediate data back to the master
node in order to saturate the network links.

5.2 Repeatability
We want to demonstrate via experimentation that the adoption

of WRAP in a virtualized federated environment such as ExoGENI
enables the re-execution of work�ows with high �delity in the
presence of major changes to the underlying infrastructure (e.g.,
hosting virtual infrastructure in di�erent sites). We use walltime
to measure the �delity of the work�ow execution.

The experiments were run against both work�ows. The ge-
nomic work�ows and the Montage work�ows were hosted in a
standalone infrastructure with a large VM and a multinode infras-
tructure with 5 large VMs interconnected with 100Mb/s network
links, respectively.

We perform the experiments in two groups. In the �rst group,
we run the work�ow within one single site. This case is repre-
sentative of a common scenario where computation is run on a
local site. We execute the work�ows on multiple sites and com-

RCI BBN FIU UH TAMU WSU UCD SL UFL OSF UVA
Site

100

150

200

250

W
a
llt

im
e
(m

in
.)

Genomic

Montage

Figure 6: Walltime on varying ExoGENI sites

0/4 1/4 2/4 3/4 4/4
Fraction of changing sites

120

140

160

180

200

220

W
a
llt

im
e
(m

in
.)

Montage

Figure 7: Walltime with varying number of changed sites

pare their performance. As shown in Figure 6, the walltime re-
mains very stable in response to changes in sites for both work-
�ows. The walltime standard deviation is 13.57 and 2.83 minutes
out of 188.88 and 103.76 minutes on average for the genomic and
Montage work�ow, respectively.

In the second group we consider the scenario where the work-
�ow is hosted in a fully distributed platform. We deploy 4 VMs
on 4 di�erent sites; VMs are interconnected with 100Mb/s net-
work link. To conduct this experiment we start by running the
work�ow on N sites. We then change one, two, three,. . . , N sites
on the original setup and run the work�ow on each of these new
con�gurations. For example in Figure 7 1/4 and 3/4 in the X-axis
denotes that 1 and 3 sites are changed from the original infrastruc-
ture, respectively. The initial deployment spans over sites located
at UFL, UCD, TAMU and OSF. The experiment has been only con-
ducted against Montage work�ow because the genomic work�ow
is rarely executed over multiple sites due to its serial structure. Fig-
ure 7 depicts the results. The selection of the site to change and
its replacement was performed randomly. As we can observe, the
walltime varies more as compared to the intra-site experiments.
This result follows intuition since we introduce a higher level of
substrate heterogeneity when multiple sites were involved includ-
ing di�erent network providers and datacenter hardware. How-
ever, the performance variation is acceptable with the walltime
standard deviation at 10.87 out of 189.45 minutes on average.

We also investigate the repeatability achieved when executing
the work�ow at di�erent times. This evaluation stresses the capa-
bilities of WRAP in a federated Cloud under di�erent load levels.
We launch work�ows at di�erent times of a day and di�erent days
of a week during January 25th and February 23rd, 2015. The ex-
periments with the genomic work�ow are run on the UH site and
those with Montage work�ow are performed on the WSU site. Fig-
ure 8a and Figure 8b show the results. When the work�ows are
run at di�erent times of the day, the walltime standard deviation is
3.79 and 1.89 out of 190.39 and 101.74 minutes for the genomic and
Montage work�ow, respectively. For the experiment with varying
days of a week we observe slightly higher standard deviation for

0-3 4-7 8-11 12-15 16-19 20-23
Time period of a day

80

100

120

140

160

180

200

220
W

a
llt

im
e
(m

in
.)

Genomic

Montage

(a) Walltime at di�erent times of a day

Mon Tue Wed Thu Fri Sat Sun
Day of a week

0

50

100

150

200

W
a
llt

im
e
(m

in
.)

Genomic

Montage

(b) Walltime on di�erent days of a week
Figure 8: Walltime at varying time of execution

both the genomic and the Montage work�ow being 4.45 and 2.02
minutes, respectively. Our result demonstrate thatWRAP achieves
�delity in work�ow execution by e�ectively leveraging the perfor-
mance isolation achieved by modern virtualization technologies
in ExoGENI. This observation demonstrates that the use of virtual
appliances and virtualization technologies are suitable to address
the problem of work�ow repeatability addressed in this work.

5.3 Performance predictability
As described in Section 4, a WVA object includes information

pertaining to the infrastructure targeted for a given work�ow in-
cluding capacities and capabilities of resources. A scientist can
modify this information in a WVA �le to in�uence the perfor-
mance of a work�ow and satisfy user requirements (e.g., meet
deadlines, reduce resource allocation in view of high resource de-
mands). Being able to control work�ow performance with reason-
able levels of predictability is due to both resource management
of virtual resources in ExoGENI (e.g., performance isolation) and
the proper leverage of this feature by WRAP. To further investi-
gate this goal we benchmark the two work�ows as a function of
VM capacity, number of VMs and network capacity of links between
VMs.

In our next experiment we investigate the impact of VM capac-
ity on work�ow performance. As mentioned in Section 4, VM ca-
pacity is represented by di�erent VM types in ExoGENI, increasing
as the type ranges from small to extra-large. The genomic work-
�ows are executed on the standalone infrastructure, and only run
on large and extra-large VMs because it requires at least 3GB RAM
for data caching. The Montage work�ows are run in the multinode
infrastructure with 5 VMs interconnected with 100Mb/s network
link. The experiments are performed on the WSU site at Detroit,
MI and assigned to one work�ow instance. As we observe in Fig-
ure 9, the walltime for both work�ows decreases as VM capacity
increases. This follows intuition since both work�ows have a sig-
ni�cant CPU and memory demand thus bene�t from larger alloca-
tion of computing resources. Interestingly, as shown in Figure 9,

Small Medium Large XLarge
VM Size

100

150

200

250

W
a
llt

im
e
(m

in
.)

Genomic Montage

(a) Walltime as a function of VM type.

Small Medium Large XLarge

20

40

60

80

100

U
ti

liz
a
ti

o
n
 (

%
)

20

30

40

50

60

I/
O

 r
a
te

 (
M

b
/s

)

CPU util. Memory util. Read rate Write rate

(b) System-centric performance of genomic work�ow

Small Medium Large XLarge
0

20

40

60

80

100

U
ti

liz
a
ti

o
n
 (

%
)

0

2

4

6

8

10

12

14

16

I/
O

 r
a
te

 (
M

b
/s

)

CPU util. Memory util. Read rate Write rate

(c) System-centric performance of Montage work�ow
Figure 9: Performance as a function of VM capacities

the walltime of the computing-intensive genomic work�ow is only
improved by 3% when VM type changes from large to extra-large.
By analyzing the system resource usage shown in Figure 9b, we
�nd that the disk read rate had a negligible increase (write rate)
as other metrics decreased signi�cantly when the VM capacity is
larger. The observation suggests the work�ow performance is re-
strained by the I/O bottleneck at this stage. It is also noticed that
the walltime of Montage work�ow drops drastically by 59% when
the VM type varies from medium to large but declines slightly
by 14% with larger VMs. We also observe that CPU utilization
even slumps by 49% when extra-large VM is used. The observa-
tion indicates that the large VM is optimal in cost performance for
the Montage work�ow and investment in more powerful nodes
would bring marginal performance gain.

We now consider performance as a function of the number of
VMs in the virtual infrastructure. We perform experiments on the
multinode infrastructure with large VMs on the UCD site. The
VMs are interconnected with 100Mb/s network link with its num-
ber ranging from 1 to 5. Because a genomic work�ow consists of
serial jobs and can only claim one slave node at a time, we assign
an ensemble of 5 work�ow instances to every experiment in order
to utilize all the VMs. Each experiment with Montage work�ow
is assigned with one single work�ow instance as its jobs can be

1 2 3 4 5
Number of VMs

100

200

300

400

500

600

700

W
a
llt

im
e
(m

in
.)

Genomic Montage

Figure 10: Walltime with varying number of VMs

100 200 300 400 500
Bandwidth

50

100

150

200

W
a
llt

im
e
(m

in
.)

Genomic Montage

Figure 11: Walltime with varying network capacity

distributed over the VMs due to its parallelism. As it can be seen
in Figure 10, the walltime is negatively correlated with the num-
ber of VMs for both work�ows. The walltime is reduced by 66%
and 45% for the genomic and Montage work�ow respectively as
the number of VMs is incremented from 1 to 5. Therefore, it is
more cost-e�ective to scale up computing resources for the ge-
nomic work�ow than the Montage work�ow in improving work-
�ow performance.

Finally, we investigate the impact of network capacity on work-
�ow performance. We added a VM within the slice for data stag-
ing. We then varied the bandwidth of the network links connect-
ing the staging site to the rest of the slice between 100Mb/s and
500 Mb/s. We ran the genomic work�ow on one large VM and the
Montage work�ow on 5 large VMs multinode infrastructure. Fig-
ure 11 depicts the results. The average wall time of the genomic
work�ow decreases by 1% as the network capacity increases, while
the Montage work�ow improves in 56%. This result suggests that
the Montage work�ow bene�ts more from larger network alloca-
tion as compared to the genomic work�ow. This is expected since
the genomic work�ow has a limited amount of intermediate data.
These results demonstrate that WRAP provides scientists with ef-
fective control over the performance of their work�ows via sim-
ple programmatic mechanisms, i.e., modifying resource capacity
in the WVA �le.

6. CONCLUSION
We explore the space of work�ow repeatability on virtualized

environments. We argue that the concept of virtual appliance is
crucial to enable high-�delity work�ow re-execution in practice.
We incarnate this principle into a novel, generic and extensible ar-
chitecture that builds around a novel work�ow appliance (WVA).
We realize this architecture intoWRAP ;, a real system which builds
on a IaaS and a work�ow management system widely adopted in
the scienti�c community. We demonstrate via experimentation
on a production environment that WRAP is able to replay work-
�ows with high �delity under various conditions including higher

level of resource heterogeneity and di�erent times. Furthermore,
WRAP bestows e�ective support for work�ow predictability with
performance information.

7. REFERENCES
[1] Montage. http://montage.ipac.caltech.edu/docs/grid.html.
[2] Network descriptive language. http:

//en.wikipedia.org/wiki/Network_Description_Language.
[3] UC Davis, UC Santa Barbara, and UC San Diego.

https://kepler-project.org/.
[4] S. Bechhofer, J. Ainsworth, J. Bhagat, I. Buchan, P. Couch,

D. Cruickshank, D.D. Roure, M. Delder�eld, I. Dunlop,
M. Gamble, C. Goble, D. Michaelides, P. Missier, S. Owen,
D. Newman, and S. Su�. Why Linked Data Is Not Enough
for Scientists. In e-Science (e-Science), 2010 IEEE Sixth
International Conference on, pages 300–307, 2010.

[5] K. Belhajjame, C. Goble, S. Soiland-Reyes, and D. De Roure.
Fostering Scienti�c Work�ow Preservation through
Discovery of Substitute Services. In E-Science (e-Science),
2011 IEEE 7th International Conference on, pages 97–104,
2011.

[6] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang
Mehta, Mei-Hui Su, and Karan Vahi. Characterization of
Scienti�c Work�ows. In Work�ows in Support of Large-Scale
Science, 2008. WORKS 2008. Third Workshop on, pages 1–10.
IEEE, 2008.

[7] Je� Chase, Laura Grit, David Irwin, Varun Marupadi, Piyush
Shivam, and Aydan Yumerefendi. Beyond Virtual Data
Centers: Toward An Open Resource Control Architecture.
In in Selected Papers from the International Conference on the
Virtual Computing Initiative (ACM Digital Library), ACM,
2007.

[8] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe,
Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi,
G. Bruce Berriman, John Good, Anastasia Laity, Joseph C.
Jacob, and Daniel S. Katz. Pegasus: A Framework for
Mapping Complex Scienti�c Work�ows onto Distributed
Systems. Scienti�c Programming, 13(3):219–237, 2005.

[9] ExoGENI. http://www.exogeni.net/.
[10] Juliana Freire, Philippe Bonnet, and Dennis Shasha.

Computational Reproducibility: State-of-the-art,
Challenges, and Database Research Opportunities. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages
593–596, New York, NY, USA, 2012. ACM.

[11] Ian P. Gent. The Recomputation Manifesto.
http://arxiv.org/abs/1304.3674, April 2013.

[12] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox,
D. Gannon, C. Goble, M. Livny, L. Moreau, and J. Myers.
Examining the Challenges of Scienti�c Work�ows.
Computer, 40(12):24–32, 2007.

[13] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor
- a hunter of idle workstations. In Proceedings of the 8th
International Conference of Distributed Computing Systems,
June 1988.

[14] Anirban Mandal, Paul Ruth, Ilya Baldin, Yufeng Xin, Claris
Castillo, Gideon Juve, Mats Rynge, Ewa Deelman, and Je�
Chase. Tr-15-01: Adapting Scienti�c Work�ows on
Networked Clouds Using Proactive Introspection. Technical
Report TR-15-01, Renaissance Computing Institute (RENCI),
2015.

[15] MongoDB. https://www.mongodb.org/.

[16] Ahalt S. Berg J. Coyle J. Evans J. Fecho K. Gillis D. Schmitt
C. Young D. Owen, P. and K. Wilhelmsen. Technologies for
Genomic Medicine: The GMW, A Genetic Medical
Work�ow Engine. 2014.

[17] RabbitMQ. http://www.rabbitmq.com/.
[18] David De Roure, Carole Goble, and Robert Stevens. The

Design and Realisation of the Virtual Research Environment
for Social Sharing of Work�ows. Future Generation
Computer Systems, 25(5):561 – 567, 2009.

[19] Idafen Santana-Perez, Rafael Ferreira da Silva, Mats Rynge,
Ewa Deelman, MarÃŋaS. PÃľrez-HernÃąndez, and Oscar
Corcho. A Semantic-Based Approach to Attain
Reproducibility of Computational Environments in
Scienti�c Work�ows: A Case Study. In Euro-Par 2014:
Parallel Processing Workshops, volume 8805 of Lecture Notes
in Computer Science, pages 452–463. Springer International
Publishing, 2014.

[20] Constantine Sapuntzakis and Monica S. Lam. Virtual
Appliances in the Collective: A Road to Hassle-Free
Computing. In Proceedings of the 9th Conference on Hot
Topics in Operating Systems - Volume 9, HOTOS’03, pages
10–10, Berkeley, CA, USA, 2003. USENIX Association.

[21] Victoria Stodden, Freidrich Leisch, and Roger D. Peng.
Implementing Reproducible Research, chapter 10:
Reproducibility, Virtual Appliances, and Cloud Computing,
pages 282–295. CRC Press, 2014.

[22] Indiana University. FutureGrid.
https://portal.futuregrid.org/.

[23] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan
Williams, David Withers, Stuart Owen, Stian Soiland-Reyes,
Ian Dunlop, Aleksandra Nenadic, Paul Fisher, Jiten Bhagat,
Khalid Belhajjame, Finn Bacall, Alex Hardisty, Abraham
Nieva de la Hidalga, Maria P. Balcazar Vargas, Shoaib Su�,
and Carole Goble. The Taverna Work�ow Suite: Designing
and Executing Work�ows of Web Services on the Desktop,
Web or in the Cloud. Nucleic Acids Research,
41(W1):W557–W561, 2013.

[24] Jun Zhao, J.M. Gomez-Perez, K. Belhajjame, G. Klyne,
E. Garcia-Cuesta, A. Garrido, K. Hettne, M. Roos,
D. De Roure, and C. Goble. Why Work�ows Break?
Understanding and Combating Decay in Taverna
Work�ows. In E-Science (e-Science), 2012 IEEE 8th
International Conference on, pages 1–9, 2012.

