
A Resource Delegation Framework for Software Defined
Networks

Ilya Baldin
RENCI/UNC Chapel Hill
100 Europa Dr., Ste 540
Chapel Hill, NC 27517
ibaldin@renci.org

Shu Huang
RENCI/UNC Chapel Hill
100 Europa Dr., Ste 540
Chapel Hill, NC 27517
shuang@renci.org

Rajesh Gopidi
RENCI/UNC Chapel Hill
100 Europa Dr., Ste 540
Chapel Hill, NC 27517
rajesh@renci.org

ABSTRACT
In this paper we address the problem of multi-domain multi-
provider SDN-based networks and propose an architecture
for controlling them using a collection of agents responsible
for ownership and use of SDN resources. Instead of pos-
ing the problem in terms of controller coordination for the
purpose of establishing connections across the network, we
propose to treat it as a resource-management problem with
explicit delegations of consumable resources by domains to
the users of those resources. The advantage of our approach
is in explicitly exposing the resource delegation abstraction.
It exposes the control of network elements in different do-
mains by different controllers and permits generalizing sev-
eral existing multi-domain architectures, making the selec-
tion of which one to apply a deployment choice, rather than
an architectural principle. We propose a rigorous algebraic
formulation for the SDN resource delegation problem and
describe the prototyping work in implementing this frame-
work and some of its applications.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.2.1 [Network Architecture and Design]: Dis-
tributed Networks

Keywords
Software-Defined Networking; Multi-Domain Networks; In-
teger Linear Programming

1. INTRODUCTION
SDN and specifically OpenFlow established itself as a sig-

nificant player in the datacenter networking, however its de-
ployment in WANs has been limited to a few large providers [6].
Harder still is the problem of using SDN in a multi-domain
multi-provider environment, where the problem of offering
services across multiple domains is frequently reduced to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620737 .

that of controller placement and coordination [4, 11] or rep-
resenting a multi-domain network as a single programmable
‘big-switch’ [10, 12]. While these approaches allow SDN
networks to mimic services available in today’s routed and
transport networks with some extensions, they do not go
far enough in exposing the potential advantages that SDN
concept provides to network.

Specifically, SDN and OpenFlow explicitly allow the inser-
tion of customer-imposed forwarding policies into the core
of the provider network by associating customer controllers
with some of the provider network elements and allowing
them to manage some portion of the flow space. This level
of flexibility provides opportunities for offering novel net-
work services by providers and for supporting network vir-
tualization, with virtual providers offering unique value-add
services on top of physical provider infrastructure using their
own SDN controllers. Of special interest is nested virtualiza-
tion, where a virtual provider supplies resources to higher-
level virtual providers. To enable this novel capability it is
critical to create a framework that (a) allows the slicing of
the network along multiple resource dimensions, that guar-
antee the isolation of providers from one another and (b)
allows providers to reason about the resources they have
or are willing to delegate to other providers. Essentially, it
is necessary to separate the ownership of network resources
from their use - the concepts that today are frequently con-
flated in designing multi-domain SDN architectures.

In this paper we propose a framework that treats offering
multi-domain services and virtualization in SDN networks
as a resource-management problem with explicit delegations
of consumable resources by domains to the users of those
resources, which can be either (a) SDN controllers belong-
ing to some provider that operate on traffic using those re-
sources, or (b) virtual domains which can create their own
sub-delegations of resources to enable nested network virtu-
alization, without operating on them. We present:

• A rigorous algebraic formulation of the resource dele-
gation problem in SDN.

• An architecture of the delegation framework that show-
cases several advantages of our approach

• A GENI prototype implementation to help analyze the
design.

2. BACKGROUND AND MOTIVATION
In order to properly isolate the activities of one provider

from the others sharing the same infrastructure, it is impor-
tant to account for consumable network resources. Those

49

are labels (e.g. IP addresses, VLAN tags, MPLS tags, wave-
lengths, etc) and parameters related to delivering the proper
quality of service (e.g. outgoing bandwidth and buffer space
on interfaces). Resource delegations represent volumes within
these multi-dimensional parameter spaces, which can be tested
for intersection and enclosure or subdivided along multiple
dimensions to create sub-delegations that serve particular
applications with QoS and resiliency requirements or topo-
logical scopes, for improved scalability.

Our approach explicitly exposes this resource delegation
abstraction. In today’s routed network a flow traveling across
the network can be thought of as taking advantage of a del-
egation of flow space to the flow owner by the network for
the duration of transit. A single flow on a particular in-
terface represents a point in a multi-dimensional flow space
constrained by available network labels. With explicit del-
egation of flow spaces the operator/owner of the network
gains control over the issues surrounding the authorization
of this delegation: the duration of the delegation becomes
an explicit parameter, as does the chain of delegations that
allows it to be traced to the original owner using crypto-
graphic mechanisms [5].

Importantly, the approach explicitly exposes any switch-
ing constraints that an SDN controller must be aware of in
order to efficiently move traffic inside a domain; constraints
that are typically hidden in e.g. the ’big-switch’ approach.
By explicitly separating various resource pools it makes it
possible to combine within a single architecture the differ-
ent ways of controlling the network - multiple coordinating
controllers belonging to individual domains or multiple con-
trollers that are specific to applications in a single domain
or user groups that have control over delegated flow spaces
across multiple domains, or even the ’big-switch’ approaches
mentioned above. It makes the decision which solution to
apply a deployment choice, rather than an architectural prin-
ciple.

Our framework can be thought of as a generalization of
a number of networking architectures, including (G)MPLS
and SDN i.e. FlowVisor[14], ADVisor [13] and VeRTIGO[2].
In particular, VerTIGO allows two extreme views: 1) a vir-
tual network that the user can control; 2) a single abstract
node. In the context of Cloud Computing, authors in [8]
propose a SDN-based framework to facilitate delegation of
some network controls to users. It leverages two instantia-
tion methods, one uses FlowVisor, the other uses ADVisor,
and illustrates the tradeoffs between security and the level
of network abstractions provided to users.

The work by Chase et al on brokered resource leases [5]
can be viewed as a precursor to our architecture. The dif-
ference lies in the focus of our work on multi-dimensional
delegations of resources and their efficient processing, com-
pared to predominantly one-dimensional delegations and the
focus on state machine operations between elements of the
architecture, considered in their work.

3. FRAMEWORK DESCRIPTION
Central to our thinking is the concept of a label. A single

label can be thought of as a sequence of bits within a par-
ticular offset in the frame header, while a label set describes
a collection of values a label can take on. Thus a label set
can be an IP subnet or a VLAN range or an enumeration of
MAC addresses. Similar to GMPLS, the label concept gen-
eralizes to wavelength identifiers and timeslots within TDM

transport systems. SDN network elements populating a net-
work are assumed to be capable of matching labels to rules,
consistent with SDN architecture and acting upon match-
ing flows. Network elements can in some cases perform label
translation by rewriting labels in the header or changing
channels/wavelength.

We also add the concept of a technology level, which binds
to a particular label offset in the header or type. Labels
within technology level A can enclose labels within technol-
ogy level B, thus making A capable of providing transport
to flows distinguished by labels only in B. Technology lev-
els aren’t required to map on ISO/OSI stack. For example,
within what is commonly known as Layer 2 ethernet, there
are several header fields available that can serve as their
own technology levels (e.g. VLAN tags and src/dst MAC
addresses). They can serve to enclose e.g. Layer 3 pack-
ets independently of each other, depending on the match-
ing rules used by network elements. Tunneling packets is
a form of an additional enclosing technology level. Based
on this ability to carry traffic for each other, we impose a
partial order relationship on the technology levels formal-
ized below. Our framework does not dictate the existence
of specific technology levels.

From the topology standpoint, in our system model we
consider the network substrate consisting of network ele-
ments and links connecting them. Network elements have
uni-directional ports that terminate the links, a formulation
consistent with ITU G.805 and G.809 standards. The net-
work substrate is divided into multiple domains owned by
different providers, which peer with each other. Resources
within domains are managed by Resource Managers or RMs.
Domain RMs can delegate their resources directly to SDN
controllers or to RMs of virtual domains. A controller oper-
ating within a particular resource delegation is aware of and
constrained in the labels and other resources. This means it
can operate on flows and create SDN flow rules only based
on the labels delegated to it, and it can perform label trans-
lations only if they lie within the delegated label spaces. The
RM of the virtual provider may choose to operate its own
controller or controllers to manage traffic, or subdivide the
delegation to create smaller virtual domains, thus enabling
nested virtualization of resources in the network.

A B

C
D

A
C

X

D

B

X Resource Manager
Controller

Figure 1: Network domains, resource managers and
controllers

50

Figure 1 demonstrates a simple example of a single net-
work domain with several enclosed scope-based virtual do-
mains based on topology (A, B and C) and a single application-
specific virtual domain D, created e.g. to support fast transit
services across the parent domain. The top-level RM in X is
responsible for all resources in the domain. X subdelegates
resources to A, B, C and D, varying the allocation over time
based on e.g. load and flow statistics or direct requests from
resource managers in other domains.

RESOURCE
MANAGER CONTROLLER

RESOURCE
MANAGER CONTROLLER

AU
TH

O
RI

ZA
TI

O
N

FR

AM
EW

O
RK

RESOURCE
MANAGER

CONTROLLER

Flow Space Manager

Network
Element

Figure 2: Communicating and enforcing delegations

Conceptually, the framework requires several elements il-
lustrated in Figure 2: RMs representing resource ownership,
embodying policy decisions about resource delegations and
controllers representing resource use, embodying the net-
work policy control over the delegated resources via flow
rules. One more element must act as an enforcement mech-
anism acting on behalf of the owner of a network element
to ensure resource delegations are respected, that we call
Flow Space Manager or FSM. It is a Policy Enforcement
Point (PEP [3]) similar to the various FlowVisor-like slicing
mechanisms we mentioned. It receives resource delegations,
verifies their validity and monitors the conformance of flow
rules inserted by the various controllers in accordance to
those. Importantly, all elements must be tied together by
an authorization framework that creates trust between them
and allows for specification of authorization policy restric-
tions on delegations, i.e. terms, intended uses, ability to
subdelegate and so on. One example of such framework is
Attribute-Based Access Control or ABAC [7].

4. MATHEMATICAL MODEL
In this section we present the notation for describing del-

egations and the formulation of an optimization problem
based on it. The network has the following resources:
T : a set of technology levels, {t ∈ T}
�: a partial order on T. If ti � tj , this implies that ti can
provide connectivity for tj .
INP t (OUTP t): a set of input (output) ports on net-
work elements associated with a particular technology level,
{inpt ∈ INP t}({outpt ∈ OUTP t}).
N : a set of network elements
NE(p): a mapping from a network-unique port identifier to
a specific network element. NE(p) : INP t ∪OUTP t → N .
Lt: a set of mono-typed labels allowed within a technology
level. 1

1For convenience, if a particular network layer offers several
address schemes (e.g. VLANs and MAC addresses at Eth-

Trt(p): a 0-1 function defining whether label translation is
allowed on a particular port: Trt(p) : {INP t ∪OUTP t} →
0 ∪ 1.
Bt(p): a function defining available buffer space on a port
Bt(p) : INP t ∪OUTP t → N
M

t,{a,b}
l,m : a 0-1 variable defining whether label l can be

transmitted on port a and received asm on port b: M
t,{a,b}
l,m a ∈

INP t, b ∈ OUTP t, l,m ∈ Lt. It encodes the delegated
topology and can be transformed into e.g. an adjacency
matrix or function.
W t(a,λ): a function defining maximum transmit band-
width for a set of labels λ on a given port a: W (a, λ) :
OUTP t × {Lt} → N
F t(n): a function describing resources available for installing
forwarding/stitching rules on a particular network element
e: F t(n) : N → N.

A delegation given to a resource manager in a particu-
lar virtual domain or a controller represents a portion of
network resources over which its owner exerts policy con-
trols (e.g. packet forwarding or sub-delegation) described in
terms of these parameters. The first delegation is created by
the owner of the resources subject to the types of services
intended to be supported within this delegation.

More formally, a resource delegation to a virtual domain
c within technology level t is a tuple:
Dt

c =< INP t
c , OUTP

t
c , T r

t
c, B

t
c,M

t
c ,W

t
c , F

t
c >.

Without the loss of generality we assume that network
elements and ports are not renumbered in the delegation.

A delegation may be associated with meta information
describing its duration and authorized uses, it may be cryp-
tographically signed. As we mentioned, the resource dele-
gations can be nested, such that RM c can sub-delegate the
volume of its resources to an RM d. In order to produce
a delegation for a customer, the owner of resources must
map Dt

d onto Dt
c according to some optimization goal while

satisfying several constraints. Figure 3 helps illustrate the
problem.

A D E

C

B

1
2
3

1
5
6A E Dtd

Dtc
1

1 1

1
2 2

3 3
5 5

6 6

X Y

4
X

Figure 3: Satisfying path continuity

The top figure shows a delegated link between ports X
and Y on nodes A and E, where the set of allowed transmit
labels is {1, 2, 3} is routed by two different paths to labels
{1, 5, 6} s.t. Mx,y

1,1 = 1, Mx,y
2,5 = 1 and Mx,y

3,6 = 1. The
lower part of the figure shows the topology from which this
delegation is derived, which consists of nodes A,B,C,D,E.
Note that label 1 is routed via node C without translation,
because e.g. C is incapable of label translation or because
label 1 was available. On the other hand, labels 2 and 3 are

ernet layer), they are considered two different levels LMAC

and LV LAN .

51

routed via nodes B and D with intermediate translation.
As delegations come and go over time, we would expect the
fragmentation of label space to occur, requiring translations
in order to achieve required connectivity.

We say that delegation Dt
d is a feasible subdelegation of

Dt
c, or, formally Dt

d ⊆ Dt
c as long as it satisfies a number of

rules:

(1)


INP t

d ⊆ INP t
c

OUTP t
d ⊆ OUTP t

d

Trtd(p) ≤ Trtc(p) ∀p ∈ INP t
d ∪OUTP t

d

Bt
d(p) ≤ Bt

c(p) ∀p ∈ INP t
d ∪OUTP t

d

F t
d(n) ≤ F t

c (n) ∀n ∈ N

Ruleset (1) preserves resource volume inclusion, ensuring
the delegated resources do not exceed those owned by the
producer of the delegation.

Additionally a feasible subdelegation must satisfy several
conditions related to label continuity and label and band-
width accounting between the original and delegated topolo-
gies, which makes the mapping from Dt

d to Dt
c homeomor-

phic, i.e. label paths in the former become links in the latter,
which we formulate as an ILP below. There are two flavors
of this routing problem: 1) label path splitting is allowed,
as shown in Figure 3; 2) path splitting is not allowed. The
routing becomes simpler if splitting is not allowed, however
it is inefficient in using the Dt

c resources, similar to flow-
splitting in routing problems. For brevity we formulate only
the former.

In order to guarantee the conservation of labels in the
delegation, we create an ILP formulation using the binary
variable ki,jx,y,l,m defined as follows: it indicates if an arc

connecting ports i and j (i ∈ OUTP t, j ∈ INP t) in Dt
d

uses the arc from x ∈ OUTP t to y ∈ INP t in Dt
c and

expects label l at x and m at y. We list the ILP rules below,
using superscript (c) or (d) whenever we need to refer to
the original or the delegated topology. So ∀a ∈ OUTP t, b ∈
INP t in the Dt

d:

M
a,b(d)
l,m =

∑
n∈Lt

∑
p∈INP t

ka,ba,p,l,n∀l,m ∈ L
t (2)

M
a,b(d)
l,m =

∑
n∈Lt

∑
p∈OUTP t

ka,bp,b,n,m∀l,m ∈ L
t (3)∑

l,m∈Lt

ka,bw,x,l,m =
∑

m,n∈Lt

ka,by,z,m,n (4)

∀w, y ∈ OUTP tx, z ∈ INP t if NE(x) = NE(y)
and both Tr(x) = 0 and Tr(y) = 0∑
w

∑
x

∑
l,m∈Lt

ka,bx,y,l,m =
∑
y

∑
z

∑
n,o∈Lt

ka,by,z,n,o (4′)

∀w, y ∈ OUTP tx, z ∈ INP t if NE(x) = NE(y)
and either Tr(x) = 1 or Tr(y) = 1∑

a,b

ka,bx,y,l,m ≤M
x,y(c)
l,m (5)

Constraint (2) says that the use of a label at the head port
of arc a, b in the delegation must come from one of the label
paths in the original topology. Constraint (3) is similar for
the tail of the same arc. Constraints (4) and (4’) speak to
the conservation of labels in the intermediate links offered
in the original topology to support arc a, b in the delega-
tion, with the former defined for the case when the specific
ports offer tag translation, and the latter - not. Finally,
constraint (5) simply states that labels on an arc must be
owned before it can be used in a delegation. For brevity,
we omit the similar treatment of bandwidth constraints in

the delegation, which in some cases can be left unspecified
if bandwidth provisioning is not supported by the network
elements.

Thus the owner of resources may compute Dt
d for some

customer based on the above formulation and by adding
additional objective functions. In particular, it could be
desirable to minimize the resource usage for a given Dt

d and
Dt

c, i.e.,

min
∑
x,y

∑
i,j

∑
l,m

ki,jx,y,l,m

5. PROTOTYPE
Woe have implemented a prototype that consists of two

parts: a delegation framework that allows creating SDN re-
source delegations consistent with the model we described
and a network application that takes advantage of the del-
egations. The prototype was implemented on ExoGENI [1]
testbed using a topology of OVS-based switches.

The delegation framework consists of a GUI application
that allows creating SDN resource delegations and saving
them in GraphML DEX graph database format [9] and a
Floodlight controller module capable of ingesting these del-
egations to create virtual topologies. We also used FlowVi-
sor in place of FSM for prototyping purposes only, although
it does not efficiently handle flow volumes, rather enumera-
tions of point flows and hyperplanes (with wildcards). The
prototype does not include an authorization framework.

1

2

3

4

5

6

7

8

9
A

B
C

1

2

3

4 6

7

8

9

Transport Provider D

client subnets i virtual switches

Figure 4: Prototype topology.

Figure 4 shows the topology of the prototype application
that uses the delegation framework. It has 3 provider do-
mains (A, B and C) with clients attached to them. A vir-
tual transit provider D is created using delegations of re-
sources from A, B and C. The delegation contains labels of
two types - IP subnets for serving L3 customers and por-
tions of destination MAC address field. Provider D uses its
own Floodlight controller to control some of the switches in
the provider domains, subject to the delegated flowspaces,
to create a virtual transport service between clients (shown
white) connected to these domains by utilizing the delegated
MAC address header space to support path-based transport
functionality with path IDs written in place of the desti-
nation MAC address, while the frames transit through it.
MAC address rewriting is performed at ingress and egress
from D. At the same time controllers belonging to domains
A, B and C support their own transport service only between

52

clients connected to their own domains (shown shaded). Us-
ing the same controller logic in all domains was done for
simplicity, however controllers belonging to the individual
providers are free to use their delegated header spaces and
other resources as they wish.

Notably, by resource delegations, D could insert flow rules
into all switches except switch 5 in provider B, with provider
B instead choosing to expose a virtual link between switches
4 and 6. In addition, this virtual link included label trans-
lation performed by switch 5 as instructed by B’s own con-
troller, because B refused for policy or resource scarcity rea-
sons to expose the same IP address space as part of its del-
egation on both ends of this link, unlike other providers on
other links. Other providers supported the full range of IP
addresses of clients of provider D. Controller D had to adapt
to this situation, by introducing its own translation via ad-
ditional flow rules in switches it could control. Explicitly
exposing this constraint as part of B’s delegation to D made
this adaptation possible.

To support transport functionality we used a modified
Floodlight with the following specialized modules:
Topology delegation module, which accepts the resource
delegation expressed in GraphML and forms the initial no-
tion of the delegated topology in the controller.
Topology verification module, which validates that its
notion of the delegated topology is accurate, i.e. that label
continuity across delegated virtual links is assured according
to the rules described in the previous section. The validation
is performed by probing, with the controller inserting spe-
cially marked packets matching randomly sampled points
from the delegated flowspace at one end of the link and
verifying their transit on the other end. This is similar to
the LLDP-based method typically used by SDN controllers,
however we must note that LLDP header represents its own
flowspace and cannot be used unmodified to probe a flows-
pace delegated to a controller. Since we are dealing with
virtual links, the successful transit of label X delegated on a
particular link, does not mean that label Y will also transit
successfully, due to possible misconfigurations of interme-
diate equipment. Our verification module uses stochastic
probing of the delegated flowspace to ensure that the dele-
gation is valid and only after it is satisfied, the controller
topology module becomes aware of a particular link.
ARP resolution module, which listens for client ARP
requests and creates proper responses to them so packets
intended from clients of one domain to the other can enter
the virtual transport provider network. It is also responsi-
ble for rules rewriting MAC headers into transport path IDs
as packets enter the virtual provider and replacing them
with actual destination MAC ids when packets egress the
provider.
Circuit module responsible for computing shortest path
circuits between domains, globally assigning them path IDs.

Besides proving that the prototype functioned as expected
we also benchmarked our topology acquisition module against
the traditional LLDP method, as shown in Figure 5. We
used several topologies with N nodes and L links as shown
on the horizontal axis. LLDP provides the shortest times.
Our stochastic method, using random sampling of the del-
egated flow space is only marginally slower. The process,
however, is dominated by the processing of the GraphML-
based descriptions of resource delegations at startup. While
the penalty is significant, we believe it can be improved upon

0	

50	

100	

150	

200	

250	

300	

350	

400	

N=20,	
 L=60	
 N=10,	
 L=26	
 N=6,	
 L=14	

Ti
m
e	

(m

s)
	

LLDP	
 Probing	

DEX	
 Graph	
 Parsing	

Stochas?c	
 Probing	

Figure 5: Comparison of probing times.

by using more efficient forms of representations. Also, this
penalty is amortized over the time a particular resource del-
egation exists, which can be significant (minutes, hours or
days), since we expect the process of revising a delegation to
be primarily driven by surges in demand, the need to intro-
duce new services and other relatively infrequent events.

6. CONCLUSIONS
We believe our approach shows several important use cases

critical to deploying SDN in multi-domain environment:
Provide explicit direct control over provider equip-

ment with verifiable constraints: when proper control
mechanisms are in place, like the authorization framework
and the FSM module, this provides both customers and
providers with an environment where customers can operate
in a manner that is enforceable and verifiable by the original
resource owner.

Explicit constraints to controllers: our framework
permits explicit communication of complex switch constraints
that involve explicit and implicit label translations that al-
lows customer controllers to flexibly adapt their policies to
the resources represented in the delegated environment.

Efficient use of label spaces: by explicitly allowing for
label translation as part of delegation, both as an available
function within some of the delegated network elements and
as a property of some of the delegated links, our framework
allows for very efficient policies that allocate labels for dif-
ferent uses. This deals with the unavoidable fragmentation
of label spaces owned by providers after multiple cycles of
delegation requests and delegation expirations/returns.

Dynamic resource allocation: SDN resource delega-
tions can be short- or long-lived, depending on the strategy
of the owner. By setting delegation terms shorter, the re-
source owner may force more frequent reconsideration and
reallocation of delegated resources, thus optimizing alloca-
tion for more short-lived traffic phenomena in its network.

Ability to combine multiple approaches in one ar-
chitecture: our framework does not require that controllers
in multiple domains communicate with each other to coordi-
nate bandwidth allocation or consolidate into a single ‘big-
switch’ to offer inter-domain services. Instead a multitude
of solutions is possible: a single virtual provider may be cre-
ated across multiple domains, or multiple controllers owned
by the same domain can coexist and support different ser-
vices within different delegations. The particular approach
to coordination of RMs or controllers is left as a deployment,
rather than an architectural choice.

Nested virtualization: our framework supports nested
virtualizations by providing sets of constraints expressed as

53

an ILP formulation. Each new delegation can be further
subdivided subject to controls of the authorization frame-
work.

Ability to introduce an economy: by defining explicit
and termed delegations of resources, our approach permits
the introduction of an economy into the network, where del-
egations may be exchanged for consideration, with the pos-
sibility of creating marketplaces and auctions, as described
in [15], due to the detailed nature of the resource definitions
and a clear separation between resource ownership and re-
source use.

Our future work focuses on defining the language to ex-
press delegation requests and integrating an authorization
framework into the prototype.

7. ACKNOWLEDGMENTS
This work is supported by the US Department of Energy

grant DE-SC0007425 and by the US National Science Foun-
dation under grant No. CNS-1111256.

The authors would also like to thank Jeff Chase and Nicholas
Bastin for valuable input and discussions of the subjects con-
tained in the paper.

8. REFERENCES
[1] I. Baldine, Y. Xin, A. Mandal, P. Ruth,

A. Yumerefendi, and J. Chase. ExoGENI: A
Multi-Domain Infrastructure-as-a-Service Testbed. In
TridentCom: International Conference on Testbeds
and Research Infrastructures for the Development of
Networks and Communities, June 2012.

[2] R. D. Corin, M. Gerola, R. Riggio, F. De Pellegrini,
and E. Salvadori. VeRTIGO: Network Virtualization
and Beyond. In Software Defined Networking
(EWSDN), 2012 European Workshop on, pages 24–29.
IEEE, 2012.

[3] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan,
and A. Sastry. The COPS (Common Open Policy
Service) Protocol. RFC 2748, 2000.

[4] B. Heller, R. Sherwood, and N. McKeown. The
controller placement problem. In Proceedings of the
first workshop on Hot topics in software defined
networks, pages 7–12. ACM, 2012.

[5] D. Irwin, J. S. Chase, L. Grit, A. Yumerefendi,
D. d Becker, and K. G. Yocum. Sharing Networked
Resources with Brokered Leases. In Proceedings of the
USENIX Technical Conference, June 2006.

[6] T. Koponen, M. Casado, N. Gude, J. Stribling, L. e.
Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix : A
Distributed Control Platform for Large-scale
Production Networks. USENIX OSDI, 2010.

[7] N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of a Role-Based Trust-Management Framework. In
Proceedings of the 2002 IEEE Symposium on Security
and Privacy, Washington, DC, USA, 2002. IEEE
Computer Society.

[8] M. S. Malik, M. Montanari, J. H. Huh, R. B. Bobba,
and R. H. Campbell. Towards SDN enabled network
control delegation in clouds. In Dependable Systems
and Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on, pages 1–6. IEEE, 2013.

[9] N. Martinez-Bazan, S. Gomez-Villamor, and
F. Escale-Claveras. Dex: A high-performance graph
database management system. In Data Engineering
Workshops (ICDEW), 2011 IEEE 27th International
Conference on, pages 124–127. IEEE, 2011.

[10] J. McCauley, A. Panda, M. Casado, T. Koponen,
S. Shenker, and U. C. Berkeley. Extending SDN to
Large-Scale Networks. Open Networking Summit,
pages 1–2, 2013.

[11] K. Phemius, M. Bouet, and J. Leguay. DISCO:
Distributed Multi-domain SDN Controllers. CoRR,
abs/1308.6138, 2013.

[12] A. Sadasivarao, A. Lake, C. Liou, S. Syed, P. Pan,
C. Guok, and I. Monga. Open Transport Switch - A
Software Defined Networking Architecture for
Transport Networks. HotSDN’13, pages 115–120, 2013.

[13] E. Salvadori, R. D. Corin, A. Broglio, and M. Gerola.
Generalizing virtual network topologies in
OpenFlow-based networks. In Global
Telecommunications Conference (GLOBECOM 2011),
2011 IEEE, pages 1–6. IEEE, 2011.

[14] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Flowvisor:
A network virtualization layer. OpenFlow Switch
Consortium, Tech. Rep, 2009.

[15] T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N.
Rouskas, I. Baldine, and A. Nagurney. Choice As a
Principle in Network Architecture. In Proceedings of
the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM
’12, pages 105–106, New York, NY, USA, 2012. ACM.

54

